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ABSTRACT 

 Title of Thesis: DETECTION OF SIGNATURES FROM   INTERNAL 

CONTAMINANT SOURCES USING INTELLIGENT 

ALGORITHMS 

Saleel Anthrathodiyil, Master of Science, 2023 

Thesis Directed By: Professor James A. Milke,  

Department of Fire Protection Engineering 

Electrical odors and smoke incidents in aviation have become a pressing concern, with over half 

of the detector activations resulting in false alarms, leading to uncertainties for flight crews. The 

escalating costs of diversions and growing awareness of associated health risks underscore the 

need for more reliable detection and discrimination from false alarms. This study harnesses 

advanced multi-sensor array technologies, intelligent algorithms, and Metal Oxide Sensors (MOS) 

sensors equipped with AI capabilities to detect and analyze signatures from candidate internal 

contaminant sources located in the cockpit. Printed circuit boards from avionics, aviation cables 

of different insulation, and external contaminant sources were put to failure testing to analyze the 

early fire signatures. These signatures were subsequently assessed using clustering algorithms and 

multivariate analysis to pinpoint distinct markers. Comprehensive gas analysis and light 

obscuration measurements further characterized the environment. Experiments were executed at 

both the University of Maryland and the Federal Aviation Administration (FAA) tech center, 

replicating diverse conditions, including an altitude simulation of 8000 ft. The focus was on the 

capability to distinguish between samples during the smoldering phase, leveraging a multivariate 
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approach and gas analysis. The study also incorporated Aspirating Smoke Detection (ASD) to 

characterize the responses during large-scale testing. The findings pave the way for identifying 

and integrating innovative technologies, achieving accurate detection of early-stage signatures 

from internal contaminants during potential aircraft smoke events. 
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1 INTRODUCTION 

 

 

The detection of signatures originating from the failure of internal contaminant sources (ICS) plays 

a vital role in proactively identifying potential aircraft fires before they pose substantial risks to 

both occupants and the aircraft itself while successfully discriminating against the fire and non-

fire sources. ICS occurrences primarily result from system failures, internal component 

malfunctions, and instances of short circuits or overloads in the multitude of cables distributed 

throughout the aircraft. The comprehensive report by Cherry (2017), consolidated from various 

aviation incident databases, has emphasized the recurrent incidence of false detector activations 

on aircraft. Consequently, an efficacious sensor system designed to recognize fire precursors must 

be able to discriminate between fire-related signatures and non-fire sources (false alarms) while 

also exhibiting high sensitivity towards the former. Although research endeavors focusing 

explicitly on aircraft applications in this domain are relatively new, previous projects undertaken 

at the University of Maryland have attempted to detect fire precursors while successfully 

distinguishing between pre-fire signatures and nuisance sources (Cestari et al. 2005).   

1.1 Motivation and Overview 

 

The primary goal of this research is to enhance aircraft and passenger safety through early 

detection of fire precursors amidst nuisance sources. The ability of detectors to correctly identify 

the smoke sources with higher confidence and discriminate from a non-alarming smoke or fire 

event will enhance the current detection capabilities. By doing so, potential calamities that might 

threaten passengers, crew, and the aircraft's integrity can be averted. Moreover, the study addresses 

the prevalent issue of false alarms in current systems, aiming to reduce unnecessary disturbances. 

Economically, the research aims to curtail the financial losses associated with aircraft fires by 

preventing extensive damage and potential lawsuits. Unforeseen consequences of onboard fires 
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include flight diversions, accidents, and personal injuries. Furthermore, the unpredictable 

repercussions of onboard fires, smoke, and fumes can trigger undesirable outcomes such as flight 

diversions, accidents, and personal injuries.  

1.1.1 Flight Diversion Costs 

 

A comprehensive review from 2002 to 2011 highlighted the financial consequences of these 

incidents. The financial burden associated with flight diversions is substantial, with widebody 

aircraft diversions reaching a peak of $105,063 and narrowbody aircraft incurring costs close to 

$75,804. Importantly, this evaluation revealed that more than half of the expenses tied to all fire, 

smoke, and fume (FSF) incidents for passenger aircraft were due to these unforeseen landings. 

This financial evaluation does not encompass potential ancillary costs related to unscheduled 

landings. These could include, but are not limited to, aircraft damage, injuries to personnel, and 

expenses stemming from emergency evacuations. Moreover, an assessment of the average yearly 

cost resulting from unscheduled landings throughout the ten-year study period approximates an 

expenditure of US$11,000,000. Table 1.1- Reproduced from Cherry (2017) shows the diversion 

costs.  

 Range of Data $ 2016 

Min Mean Max 

Regional  958 25,762 50,565 

Narrow  1,379 26,159 75,804 

Wide  6,859 62,469 105,063 

 

Table 1.1 Range of Diversion Costs [Cherry, 2017] 
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1.1.2 Emergency Evacuation 

 

Emergency evacuations can result in considerable expenses, predominantly replacing escape slides 

and subsequent costs linked to potential injuries. According to a report by Cherry (2017), there 

were 130 incidents involving the deployment of escape slides throughout a 106-month study 

period, each incident averaging a cost of $68,000. Consequently, the yearly expenditure assessed 

for removing and replacing escape slides throughout this study period is estimated to be around 

US$600,000.  

1.1.3 Significant Events 

 

Cherry (2017) identified and quantified the significant events that include fire, smoke, or fume 

occurrences and detector events, notably those that activated the onboard fire or smoke warning 

system (Cherry, 2017, p. 97) from the incident reporting system database, identified approximately 

560 significant events during the study period, with an average occurrence rate of 50 per million 

flights. Particularly noteworthy was the upward trend in the annual number of all fire, smoke, or 

fume events in occupied areas of passenger airplanes, averaging about 1,000 incidents per year 

(Cherry, 2017, p. 25). The prevalence of these incidents on widebody airplanes is likely associated 

with extended flight duration and increased passenger count, which consequently augments the 

number of potential fire, smoke, or fume sources. When analyzed based on flight hours, widebody 

airplanes exhibit an occurrence rate comparable to all passenger airplanes, with regional airplanes 

showing higher rates. In contrast, narrowbody airplanes demonstrate the lowest occurrence rates 

per flight and per-hour.  
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1.1.4 FSF Events by Source 

 

Based on data from Cherry (2017), Figure 1.1 provides an in-depth breakdown of the sources of Fire, 

Smoke, and Fume (FSF) events in the occupied areas of wide-body, Narrow Body, and regional 

passenger airplanes. It shows that air systems—including engines, APU, bleed systems, and air 

conditioning—significantly contribute to FSF events across all aircraft types. Electrical systems are 

the most common source of FSF incidents, responsible for approximately two-thirds of such events on 

widebody passenger airplanes, especially when factors like lighting and in-flight entertainment systems 

are considered.   

       

Figure 1.1 FSF Events by the source from Cherry (2017) across various passenger planes, Wide 

Body Passenger Airplanes (Outer Circle), Narrow Body Passenger Airplanes (Middle Circle) & 

Regional Passenger Airplanes (Inner Circle) 
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1.1.5 FSF Events by Location 

 

 

Figure 1.2 - FSF Events by the location from Cherry (2017) across various passenger planes, 

Wide Body Passenger Airplanes (Outer Circle), Narrow Body Passenger Airplanes (Middle 

Circle), and regional Passenger Airplanes (Inner Circle) 

 

From the data from Cherry (2017) illustrated in Figure 1.2 - for passenger airplanes, approximately 

80% of Fire, Smoke, or Fume (FSF) events trigger manifestations within the cabin, with 50% leading 

to FSF occurrences on the flight deck. FSF incidents occurring solely in the cabin on regional passenger 

airplanes are less frequent than their larger counterparts. This reduced incidence is likely due to fewer 

potential contaminant sources, such as cabin lighting and in-flight entertainment systems, typically 

found in more limited quantities in regional airplanes. 
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1.1.6 Proportion Of FSF Events Causing Flight Disruptions 

 

The proportion of Significant Events 

 Passenger Cabin Flight Deck Passenger Cabin 

and Flight Deck 

Regional Passenger 

Airplanes 

32% 30% 29% 

Narrow Body 

Passenger Airplanes 

39% 41% 46% 

Wide Body Passenger 

Airplanes 

20% 35% 35% 

 Cargo Bay Main 

Deck  

Flight Deck  Cargo Bay Main 

Deck & Flight Deck  

Freighter Airplanes 42% 33% 43% 

 

Table 1.2 Occupied Areas - Proportion of FSF Events in Passenger Airplanes are Significant 

[Cherry, 2017] 

Reproduced from Cherry (2017, p34), Table 1.2 illustrates the significant events on passenger 

airplanes that have resulted in flight disruptions. It can be observed that disruptions are more 

frequently induced by events occurring in the flight deck than those confined to the cabin areas. 

The urgency to respond to events in the cockpit is heightened due to the presence of critical 

instrumentation and the potential asphyxiation risks to pilots. Consequently, these events 

necessitate immediate action, potentially causing more disruptions than those in the passenger 

cabins, where there may be a more significant window of time to investigate and confirm the nature 

of the incidents. 

1.1.7 Detector Event by Fire, Smoke, And Fume Source 

 

During the study period by Cherry (2017), a comprehensive analysis of FSF detector events across 

various locations in the airplane was conducted for both passenger and freighter airplanes. It was 
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shown that there was some reduction in the rate of occurrence of both genuine and false detector 

warnings, with an average occurrence of 3.6 per million engine flights for all detector events and 

2.7 per million engine flights for significant events. Intriguingly, the rate of false warnings was 

found to be considerably higher in freighter airplanes compared to all categories of passenger 

airplanes. A similar trend was observed for APUs, with a decline in the annual number of detector 

events over the course of the study. The data, encompassing all airplanes (passenger and freighter), 

related to all flight deck announcements, irrespective of cause or consequences. However, the rate 

of occurrence of APU detector events on freighter airplanes was approximately twice that on 

passenger airplanes, averaging around 4 per million flights. The study acknowledges the reduction 

in false warnings, but no firm conclusions could be drawn regarding the underlying reasons or the 

broader significance of this trend due to the complexity of the parameters. Figure 1.3– shows the 

trend Analysis of Detector Events by Source at Diverse Aircraft Locations, including engine, APU, 

Cargo bays, and manned areas, from the data compiled from Cherry (2017).  

 

Figure 1.3 Trend Analysis of Detector Events by Source at Diverse Aircraft Locations for both 

passenger and freighter aircraft 
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Despite the advancement and increased reliability of fire detection technologies within aircraft 

systems, the prevalence of false alarms continues to overshadow genuine alarms to a significant 

extent. This trend has both technical and psychological implications, particularly for pilots and 

crew members. An accumulation of false alarms may inadvertently lead to a neglect of real alarms 

in the future, a phenomenon rooted in the psychological response to repeated non-threatening 

stimuli. According to Breznitz (1984), each false alarm incrementally reduces the credibility of a 

warning system, a principle articulated in his seminal work, Cry Wolf: The Psychology of False 

Alarms. This underscores the need for continual advancements in detection systems, striving for 

greater reliability and sensitivity. Such progress is essential to maintaining confidence in these 

systems and, more importantly, safeguarding property and lives in complex, high-value 

applications.  

1.2 Fire Detection Technologies 

 

A comprehensive understanding of commercially available fire detection technologies is essential 

in evaluating fire safety measures and strategies. This section provides an overview of the various 

detection mechanisms used in the study. By scrutinizing these technologies, the study aims to 

contribute valuable insights to the ongoing dialogue on fire safety and prevention, aligning the 

empirical findings with the broader goal of enhancing fire safety. 

1.2.1 Gas detectors 

 

Gas-sensing fire detectors are specifically designed to identify the presence of particular gases that 

may be emitted during a fire. Unlike traditional smoke detectors that detect particles, gas sensing 

detectors operate on the principle of identifying certain combustion byproducts, such as carbon 

monoxide (CO), carbon dioxide (CO2), or other fire-related gases. These detectors can provide an 
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early warning of a fire, even before smoke is visible, making them particularly valuable in 

environments where early detection is crucial. Gas sensing detectors can also be less prone to false 

alarms from cooking or dust, as they are tuned to specific gas signatures associated with the 

foreseeable sources in particular locations. The choice of sensor technology may vary depending 

on the specific gases to be detected and can include electrochemical, semiconductor, and infrared 

sensors. These advanced technologies contribute to the accuracy and reliability of gas-sensing fire 

detectors, enhancing overall fire safety and protection. By utilizing the gaseous signatures of fires, 

an innovative system incorporating multiple gas sensors, Taguchi sensors, and thermocouples has 

been developed to enhance fire detection capabilities. This integrated approach allows for precise 

detection and differentiation between different types of fires, such as flaming and smoldering fires 

(Hagen et al., 2000). 

1.2.2 Aspirating smoke detectors 

As a significant interest point in this study, aspirating smoke detectors (ASD), also known as air-

sampling smoke detectors, were utilized as a part of the advanced early warning detection 

mechanisms. Representing a cutting-edge approach, ASD provides solutions where conventional 

methods may not be sufficient. These detectors consist of a tubing network that draws air samples 

into a central detection unit at a distance from the protected area. Once inside the detection unit, 

either a laser or LED light source interacts with the air sample, and a sensor assesses the ensuing 

scattering or obscuration of light by smoke particles. Both conventional and addressable systems 

of ASD are available in the market. 

In a specific test conducted at a warehouse measuring 43 m in length and 12 m in width, resulting 

in a gross floor area of 516 m2, the ASD system was evaluated alongside conventional smoke 

detectors and projected beams. Various smoke sources, including liquid heptane (100 ml), timber, 
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and smoke pellets, were used to mimic real-world fire conditions. The results revealed that the 

ASD system outperformed both the conventional and projected beam detectors. When 

conventional spot-type detectors responded, the ASD system was found to have responded an 

average of 52.2 seconds earlier, underlining its superior early detection capabilities (Tylor et al., 

2016). Figure 1.4 - illustrates an example configuration of a VESDA network.                                    

            

Figure 1.4 An example VESDA Network. Reproduced from PHF Fire 

 

1.2.3 Applicability of different detector technologies 

In recent years, there has been a substantial focus on enhancing fire detection methodologies within 

aircraft, particularly in cargo compartments and other unoccupied areas. This interest is driven by 

the increased use of composite materials and Li-ion battery-powered devices, fueled by the 

changes in fire safety regulations in 2019 with a focus more on performance-based approaches. A 

comprehensive body of research has evaluated fire detection technologies and their challenges 

under flaming and smoldering conditions to assess their reliability and effectiveness (Milke et al., 

2017). These studies have contributed to the advancement of detection technologies and explored 

the challenges and applicability of various methods. A detailed comparison of the different smoke 

detection methods reproduced from the work of Milke et al., (2017), including their respective 

responses and limitations, is provided in Tables 1.3 and 1.4.  

https://www.phffire.com/vesda-system-installation/
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Technology Sensitivity – 

Flaming Fires 

Sensitivity – 

Smoldering Fires 

Nuisance alarm 

susceptibility 

Maintenance 

Ionization H M H H 

Photoelectric M H M M 

ASD H M-H M H 

Projected beam M H M H 

Video H H M H 

Spot heat H L L L 

Linear heat H L L L 

Radiation H L L H 

Gas M-H M-H H H 

H- High, M- Moderate, L- Low 

 

Table 1.3 Applicability of fire detection technologies for commercial aircraft [Milke, 2017] 

 

Technology Principal Challenge 

Ionization Nuisance alarm susceptibility, modest 

response to smoldering fires 

Photoelectric Modest response to flaming fires with 

limited visible smoke 

ASD Maintenance of filters 

Projected beam Maintenance of photo-receiver, provision 

of a clear pathway for the light beam 
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Video Provision of clearance space for viewing, 

lighting 

Spot heat Slow response to smoldering fires 

Linear heat Slow response to smoldering fires 

Radiation Maintenance of optics 

Gas Stability of sensors 

 

Table 1.4 Challenges in applying detection technologies in commercial aircraft. [Milke, 2017] 

 

1.2.4 Fire Detection and Smoke Testing Protocols for Aircraft 

FAA identifies different probable onboard smoke sources, highlighting failures of electrical 

equipment due to short-circuited wires and overheating of devices due to the loss of thermostats 

or controlling mechanisms (FAA, AC-25-9A). Airplanes with a passenger capacity of 20 or more 

must be equipped with specific signaling mechanisms for alerting the flight crew to a fire in an 

isolated, non-occupiable room (Title 14, Chapter I, Subchapter C, part 25). These regulations also 

outline requirements for lavatories, mandating smoke detection systems that provide warnings in 

the cockpit or visible/audible warnings in the passenger cabin (14 CFR, 25.854). Furthermore, 

standards for cargo or baggage compartment smoke or fire detection systems stipulate the 

provision of visual indication within one minute of fire detection and to detect a fire at temperatures 

below those that would threaten structural integrity (14 CFR, 25.858).  

The advisory circular emphasizes protection against continuously generated smoke in the cockpit 

through smoke evacuation procedures, and it also suggests a smoke detection system for the crew 

rest area to minimize hazards. Various materials can be used as test fuels as per the advisory 
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circular, for smoke detection tests, including plastic, paper, rags, burlap, and any other acceptable 

fuels. One of the backgrounds for these smoke detection tests is that fire detection systems in 

cockpits must be able to provide a warning before the fire reaches an uncontrollable state or causes 

damage to liners, wiring, equipment, structure, essential systems, or other critical components. 

(FAA, AC 25-9A). The current guidelines do not specifically encompass various avionics, which 

are heavily utilized and have been frequent sources of smoke or fumes in aircraft. The avionics 

and wiring used in the cockpit have been the primary focus of this study.  

Furthermore, while 25-9A's smoke detection testing includes only smoldering tests, the UL 268 

Smoke Detectors for Fire Alarm Systems mandate testing in flaming and smoldering modes (UL, 

268). The smoldering combustion test, conducted in a chamber filled with smoke from smoldering 

fire, requires the detector to alarm within 10 minutes of the test's start. Conversely, in the flaming 

combustion test, where the chamber is filled with smoke from a flaming fire, the detector must 

alarm within 3 minutes of the test's initiation according to both standards (NFPA, 72; UL, 268). 

This comprehensive overview of standards and practices underscores the complexity and 

significance of managing smoke detection and control in aviation, reflecting ongoing efforts to 

enhance passenger safety and operational efficiency. 

1.3 Electronic Nose (E-nose) Technology 

An Electronic Nose (E-nose) is an advancement in detection technologies that emulate the human 

sense of smell. It is specifically designed to detect odors and identify their components based on a 

set of signature training data. Just as the human nose recognizes smells through unique sensory 

patterns, the E-nose classifies odors according to corresponding signature patterns associated with 

various samples. The need for measuring the particulates in a sample makes the sensory techniques 
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complex as compared to measuring various forms of energy. The core of the E-nose's functionality 

resides in its mechanism for analyzing the chemical composition of the samples. This mechanism 

comprises an array of different sensors, each reacting to specific chemical signatures tied to 

different samples. Each sensor's response contributes to a collective pattern is used in detecting 

the odor. Once this pattern is established, the E-nose employs a recognition system, such as a 

trained neural network, to identify new samples. By comparing the detected pattern with stored 

signatures in its database, the E-nose can discern and categorize various samples, including toxic 

and odorless ones. 

The three crucial parts of an E-nose system are: -  

• Sampling System: This component uses an aspirating pump within the device housing to 

draw the targeted components toward a sensor array. Some E-nose configurations also 

collect ambient conditions before measuring the sample, allowing them to obtain a baseline 

for comparison. 

• Sensor Array: Housed within the device, a diverse set of sensors reacts with the target 

gases, and the system records the responses. The sensor configurations can vary, including 

but not limited to Metal Oxide Sensors (MOS), Polymer composite sensors, and Electrical 

conductivity sensors. 

• Pattern Recognition: After capturing the responses from the sensor array, the system 

proceeds to analyze and identify the target sample. Various pattern recognition techniques 

are employed for this purpose, such as Artificial Neural Networks (ANNs), support vector 

machines (SVMs), clustering analysis, and Principal Component Analysis (PCA). These 

methods facilitate the system's ability to discern specific odors by interpreting the unique 

signature patterns corresponding to each sample. 
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E-nose systems predominantly operate in two distinct modes: training and prediction (Sensigent, 

n.d.). During the training mode, the sensors are exposed to target gases/ samples, forming a vast 

and comprehensive training set. This preparation serves to acquaint the sensors with various 

chemical signatures, facilitating subsequent stages of neural network training. Once the sensory 

data is collected, they undergo post-processing and are fed into a training algorithm. Various neural 

network methods/clustering analyses may be employed to construct a robust predictive model 

during this phase. Then it can be run in prediction mode, allowing the E-nose to identify specific 

chemical species. The system refers to the training set and utilizes the algorithms developed during 

training to recognize and classify the gases of interest.  
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2 LITERATURE REVIEW 

 

2.1 Historical Overview of In-Flight Fire Incidents  

 

The tragic incident involving Swissair Flight MD-11 on September 2, 1998, which claimed the 

lives of 215 passengers and 14 crew members, served as a significant catalyst for research into 

smoke and fumes within aircraft cabins. The investigation into this catastrophe revealed that a fire 

originating on the upper right side of the cockpit caused the crew to lose control of the aircraft. 

This fire was subsequently identified as having been sparked by a short circuit wire arcing event 

that ignited the thermal and acoustic insulation cover materials (Transportation Safety Board of 

Canada, 1999). This incident's tragic loss of life emphasized the critical importance of fire 

detection and suppression within aircraft. Consequently, there has been substantial progress in 

these areas, with a marked increase in research and development aimed at improving systems for 

detection and monitoring.  

Another distressing event was the crash of EgyptAir Flight 804 on May 19, 2016, resulting in the 

deaths of 56 passengers and ten crew members. Investigators believe that a fire in the cockpit led 

to this tragic loss. Similarly, the devastating crashes of UPS Flight 6 in 2010 and Asiana Flight 

991 in July 2011 were traced back to fires originating in cargo compartments. These regrettable 

incidents serve as stark reminders of the need for early warning and detection systems in aircrafts. 

Consequently, these tragedies have galvanized the aviation industry's efforts to enhance safety 

measures and mitigate the risks associated with onboard fires. The industry's ongoing commitment 

to research, technological innovation, and regulatory compliance reflects an acute awareness of 

the dire consequences of failing to adequately address these critical safety concerns and never-

ending challenges within the industry.  
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2.2 Aircraft Air Quality: Contaminant Sources, Implications, and Monitoring 

Technologies 

 

In an aircraft, contaminants can be broadly classified into external and internal sources according 

to their origin. Both categories play a crucial role in affecting air quality within the cabin and flight 

deck, and their understanding has significant implications for safety and health 

regulations. External Contaminants can enter the aircraft through engines or the Auxiliary Power 

Unit (APU). External contaminants might also encompass substances outside the airplane, such as 

deicing fluid, engine/APU lubricating oil, and various fumes. Internal sources of contaminants are 

present within the cabin or flight deck. Examples include occupants, electronics, food and drink, 

and carry-on bags. (FAA Reauthorization, 2018).  A notable area of concern highlighted by this 

study is the of avionics components and wire insulations in the cockpit. Fires involving energized 

electrical equipment containing PCBs could release vapors from burning PCBs and other toxic 

byproducts of combustion, such as polychlorinated dibenzo-p-dioxins (FAA Reauthorization, 

2018).  

E-noses or multisensor array techniques have been explored for cabin air quality monitoring and 

measurement in the past. A particular sensor array mechanism, Aerotracer, developed by 

AIRSENSE Analytics, is utilized by maintenance crews to detect, and identify common Volatile 

Organic Compounds (VOCs). It is sensitive enough to classify odor concentrations on a sensing 

scale, which enables the identification of the odor's source. (Kos et al., 2018). Notably, Aerotracer's 

deployment is primarily during maintenance rather than in-flight operations, limiting its real-time 

monitoring capabilities. 
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2.3 Trends and Analysis of Fire, Smoke, and Fume Events in Commercial Aircrafts 

The study by Cherry (2017) focused on the analysis of fumes, smoke, and fire (FSF) events on 

airplanes from the period of 2002 to 2011, and it examined a total of 145,32 events. Within this 

dataset, 38% of the events were identified as significant according to the criteria established in the 

study. The average number of significant events per year stood at approximately 560, translating 

to an average occurrence rate of 50 per million flights. Additionally, the study revealed an upward 

trend in the annual number of all FSF events, increasing from a range of 800 in 2002 to 1400 in 

2011 (Cherry, 2017). This increase could be attributed to the growth in air traffic during the 

corresponding years. When considering only significant FSF events in occupied areas, the average 

rate of occurrence for regional and narrow-body airplanes was found to be roughly 30 per million 

flights, and for wide-body passenger airplanes, it was approximately 80 per million flights.  

Air systems (engines, APU, bleed systems, and air conditioning systems) are reported to be the 

predominant sources of fire, smoke, and fume events in occupied areas of both passenger and 

freighter airplanes. However, the electrical systems are reported as the most frequent source of 

FSF, with approximately two-thirds of occurrences attributed to this source on wide-body 

passenger airplanes, mainly when lighting and in-flight entertainment systems are considered. 

When examining the location of FSF events in the occupied areas of all passenger and freighter 

airplanes, the data suggests that approximately 80% of events result in FSF within the cabin, while 

50% of the events lead to FSF on the flight deck. In contrast, for freighter airplanes, the majority 

of FSF events are reported to occur on the flight deck. Around 25% to 30% of all FSF events in 

the occupied areas for passenger and freighter airplanes resulted in an unscheduled landing 

(Cherry, 2017).  
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The analysis yields that, among all passenger and freighter airplanes, approximately 40% of false 

warnings originating in the engine bay led to unscheduled landings. Further examination of the 

data reveals a decline in the cumulative rate of occurrence of false warning detector events in 

inaccessible cargo bays for freighter planes, from a range of 15 to 5 per million flights between 

2003 and 2011. This rate aligns closely with that observed for passenger planes by 2011. For 

passenger airplanes, approximately 2% of these events are caused by fire, smoke, or fumes within 

the lavatory. Additionally, the proportion of false warnings for the detector events in the lavatories 

is found to be approximately 37% for all events and 21% for significant events (Cherry, 2017). 

2.4 Smoke Particle Dynamics and Aircraft Bleed Air Contamination: Insights from 

Recent Studies 

 

In a study by Fabian and Gandhi (2008), the authors analyzed the mean particle diameter for smoke 

emanating from flaming and non-flaming fires. They found that when producing a light 

obscuration of 0.5%/ft, the mean particle diameter ranged from 0.08 to 0.22 µm. Despite the 

consistency in the level of light obscuration across these smokes, they noted a variance in 

detectability by light scattering or ionization detectors. This variation is attributable to the fact that 

these detection technologies depend on the particle diameter's square and first power, respectively. 

Figure 2.1 - representing these findings was reproduced from the work of Fabian et al. (2007) as 

part of the smoke characterization project. 
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Figure 2.1 Mean particle diameters for light obscuration of 0.5 %/ft [Fabian, et al., 2007] 

 

Milke et al. (2008) combined the previous studies to characterize the smoke detector responses 

and reviewed a compilation of experimental programs that utilized various fuels and were 

conducted in different spatial dimensions. Despite these variations, the 80th percentile values for 

obscuration levels at smoke detector response were mostly similar, except for ionization detectors 

in non-flaming tests by NIST. For flaming fires without forced ventilation, obscuration levels 

ranged from 1.4 to 10.7 %/ft for ionization detectors and 2.7 to 12.9 %/ft for photoelectric 

detectors. With ventilation, the 80th percentile values differed notably between the two 

technologies. For non-flaming fires without ventilation, the values ranged from 4.4 to 18.5 %/ft 

for ionization and 1.6 to 12.1 %/ft for photoelectric detectors. Excluding the NIST study, suggested 

guidelines for obscuration level could be 12 %/ft for ionization detectors and 10 %/ft for 

photoelectric detectors. Figure 2.2 - Show the 80th percentile obscuration level at detector response 

in various smoke characterization programs. 
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Figure 2.2 80th percentile obscuration level at detector response in various smoke 

characterization programs. [ Milke et al., 2008] 

 

Overfelt and Jones (2012) discuss the principal contaminants from an aircraft bleed air supply. 

These contaminants could be aerosolized droplets of a Jet engine or APU lubricating oil, along 

with partially or fully pyrolyzed byproducts of combustion of the working fluids (Overfelt and 

Jones, 2012). Table 2.1 reproduced from the report, details the probable contamination event and 

the corresponding contaminant. Furthermore, Table 2.2 explores the commercial sensor 

technology available to detect these contaminants. The target contaminant sources under 

investigation in this study differ from those explored in earlier bleed air quality research. However, 

there are similarities in the methods employed, particularly in using sensing technologies. Some 

of the technologies utilized in the multisensory array for this investigation overlap with those 

implemented in previous studies. 
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Potential Bleed Air 

Contamination Event 

Probable 

Contaminant 

Engine oil leak producing aerosolized 

droplets of oil in the engine compressor. 

 

• Very fine mist of engine oil aerosols 

• Small amounts of carbon monoxide 

(CO) and carbon dioxide (CO2) 

 

Partially pyrolyzed jet engine oil 

 

• Very fine mist of engine oil aerosols 

• Carbon monoxide (CO) 

• Carbon dioxide (CO2) 

• Misc. unburned hydrocarbons 

• Ultrafine smoke particles 

Fully pyrolyzed jet engine oil 

 

• Carbon monoxide (CO) 

• Carbon dioxide (CO2) 

• Ultrafine smoke particles 

 

Table 2.1 Summary of Potential Bleed Air Contaminants [Overfelt et al., 2012] 

 

Possible Bleed Air Contaminant 

 

Commercial 

Sensor Technology 

Engine oil aerosols 

Ultra-fine smoke particles 

Light scattering photoelectric detectors (dia>0.5   μm) 

or ionization detectors (dia<0.5 μm) depending upon the 

aerosol/particle size distribution 

Carbon Monoxide (CO) Electrochemical cell sensor with selectivity optimized 

for CO 

Carbon Dioxide (CO2) Non-dispersive Infrared (NDIR) sensor optimized for 

CO2) 

Misc. unburned hydrocarbons Catalytic bead sensor OR photoionization detector 

depending upon the specific hydrocarbon(s) to be 

detected 

 

Table 2.2 Possible Bleed Air Contaminants and Potential Sensor Technologies [Overfelt et al., 

2012] 
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2.5 Advancements in Fire Detection: Multi-Sensor Integration and Algorithmic 

Approaches 

 

Milke (1999) explored multiple fire signatures with integrated intelligence to improve fire 

detection speed and accuracy. By combining CO and CO2 sensors, the device could efficiently 

differentiate between flaming and non-flaming fires based on their respective gas concentration 

rates. Milke and Zevotek (2016) further examined the responses of smoke detectors to signatures 

from cooking activities. Their experimental approach encompassed a range of measurements, 

including CO, CO2, and an array of smoke detector technologies. This array comprised ionization, 

photoelectric, and advanced algorithm ionization smoke detectors.  They posited that combining 

multiple sensors with an intelligent algorithm could optimize the response time. To maximize the 

available reaction time and deliver the most promising precursor signal, an algorithm can be 

formulated that harnesses essential gas temperature and optical density values. This strategy would 

ensure the timely detection of potential cooking fires while reducing the likelihood of nuisance 

alarms.  

On the earlier work for a multidimensional sensor for gas analysis, Muller and Lange (1986) 

verified a sensor array's capability to accurately detect and differentiate between three distinct 

gases. Given the high efficacy of recognition demonstrated, it is postulated in their work that this 

methodology can be scaled to identify a more extensive array of gases. It is evident from the 

findings that an optimal chemical sensor system should encompass an array of sensing elements. 

Ideally, each of these sensors should exhibit sensitivity to all target gases. A crucial criterion is that 

any cross-sensitivities among these sensors should maintain linear independence. Moreover, 

preliminary evaluations in the study indicated that even basic pattern recognition methodologies, 

such as the computation of correlation coefficients, are notably efficient in discerning pertinent 
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insights from the array of signal spectra. Moriizumi, Nakamoto, and Sakuraba (1992) studied 

pattern recognition for electronic noses, focusing on utilizing Artificial Neural Networks (ANNs). 

Their study revealed the effectiveness of the backpropagation algorithm in differentiating aromas 

specific to alcoholic beverages. Additionally, they examined the potential of the Fuzzy Learning 

Vector Quantization algorithm in odor discrimination. The research also confirmed that analog BP-

ANN (Backpropagation - Artificial neural network) hardware, when paired with tin oxide sensors, 

showed significant prowess in gas discrimination. 

Ramesham et al., (2001) used a Cyranose E-nose equipped with 32 conductive polymer sensors to 

detect outgassing species emerging from wire insulation under induced thermal stress. 

Remarkably, the E-nose demonstrated the capability to detect the corresponding signatures within 

a rapid timeframe of 5 to 20 seconds during the experimental tests. Fujinaka et al. (2008) verified 

an intelligent electronic nose system designed with 8 MOGS (Metal Oxide Gas Sensor) to detect 

fires at an early stage. The system demonstrated the ability to identify fire sources during their 

initial stages with a 99% accuracy rate. Additionally, results derived from multivariate K-Means 

algorithms indicated a 98% accuracy in predicting the sources. In a study by Scorsone et al. (2006), 

an effort was made to develop an electronic nose for fire detection by initially exploring the 

chemical markers from different types of smoke using GC-MS and FTIR analysis. Their findings 

highlighted that the chemical compositions of various smokes are distinct enough to differentiate 

between fire and non-fire events. During a test with smoldering wood, the response time of the 

electronic nose's CP sensors was about 350 seconds. This timing closely mirrored the detection 

timings recorded by the FTIR analyzer for the primary five chemical species and the initial 

detection by the optical detector. Notably, Carbon Monoxide (CO) was detected in just 200 
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seconds. A critical observation arose when a standard optical detector raised a fire alarm 

approximately 600 seconds after the wood ignited in the fire cabinet. 

In a comprehensive study by Ni et al. (2008), the potential of a digital nose in early warning 

systems for electrical fires was examined. The team investigated the off-gassing under thermal 

stress from various insulations to gauge the early detection capabilities and evaluated the 

discriminative abilities of the sensor array using multivariate analyses such as PCA and KNN 

algorithms. This electronic nose was equipped with an 11-sensor array, which included 

electrochemical sensors, quartz microbalance (QMB) sensors with distinct polymer coatings, and 

heated metal oxide sensors (MOS). It was observed that the best performance was achieved using 

the electrochemical and MOS sensors. The E-nose model displayed a higher tolerance to random 

discrepancies in the MOS sensor readings than in the electrochemical sensors. Prolonged drifts in 

the MOS or electrochemical sensor responses barely influenced the accuracy of the E-nose. Also, 

they identified a difference in vapor compositions generated from electrical versus non-electrical 

heating through mass spectra analysis, emphasizing the potential of the sensor array in 

differentiating between electrical fires and other types of fires. 
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3 RESEARCH AND METHODOLOGY 

 

3.1 Introduction 

 

The primary focus of this study is on the possible internal contaminant sources found within 

aircraft cockpits. In collaboration with the FAA Fire Safety Branch and through industrial 

donations, samples were collected for various avionic components, wire insulations, and other 

potential nuisance sources commonly present in aircraft environments. 

The research methodology was delineated across three distinct experimental setups, each 

conducted in different locations and chambers of varying sizes: 

1. An initial small-scale test occurred in a closed chamber at the University of Maryland's 

Fire Protection Engineering, Koffel Lab. 

2. This was followed by large-scale experiments in a simulated cockpit mockup, mirroring 

the volume specifications of a Boeing 737 at the FAA William J. Hughes Technical Center 

in New Jersey.   

3. The third setup involved testing in a reduced pressure vessel, where the internal air pressure 

was maintained at 10.9 psi, replicating cabin pressure at 8,000 ft at the FAA tech center.   

In each experiment, a standardized procedure was employed to systematically induce thermal 

impact into the samples, facilitating the generation of specific signatures. These signatures were 

subsequently analyzed using an array of sensors. The collected data was then processed through 

multivariate analysis for a more in-depth understanding and insights. 
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3.2 Experimental Design and Data Acquisition 

 

3.2.1 UMD Test Chamber 

 

The experiments were conducted using a test chamber designed for the ASTM E662 - Standard 

Test Method for Specific Optical Density of Smoke Generated by Solid Materials (ASTM E662, 

2021). The chamber dimensions were 0.9144 m in height, 0.9144 m in width, and 0.6096 m in 

depth, offering a total volume of approximately 0.52 m3. To safeguard against any potential 

overpressure events, the chamber was equipped with a blow-out panel, secured with aluminum 

foil, covering 806.45 cm2. A radiant heater featuring a 2.54 cm diameter opening was installed 

within the chamber. Samples were positioned vertically, 2.54 cm from the heater's center, through 

a sample holder that could be controlled from the outside. The furnace was situated along the 

chamber's centerline, equidistant from the front and back sides of the chamber. The opening of this 

furnace faced toward the chamber's right wall, positioned approximately 30.48 cm away. The 

furnace's centerline was elevated, approximately 19.68 cm above the chamber's floor. The radiant 

heater was calibrated to exert a 25 kW/m2 heat flux. Samples subjected to this heat had an average 

exposed area of 16.5 cm2, with a total area of 19.35 cm2. A 91 cm segment of Ultra chemical-

resistant Tygon tubing was employed to transport gaseous signatures from the containment box to 

the electronic nose (E-nose). To avoid damage to the internal filters in the E-nose, an inline filter 

with a pore size of 0.22 µm was integrated within the pathway on the tubing upstream from the 

chamber. The wiring connections for the cable insulation tests were channeled through a vent on 

the chamber's front side. Additionally, the experimental setup included a photometric system 

designed to assess light obscuration levels for the smoke from the samples through a Data 

Acquisition (DAQ) system. Figure 3.1 – shows the small-scale experimental setup. 
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Figure 3.1 UMD Experiment Box 

3.2.2  Multi-Sensor E-Nose  

 

The MSEM-160 digital nose, manufactured by Sensigent LLC, was utilized predominantly for this 

research. This battery-powered portable device incorporates various sensor technologies and data 

fusion algorithms to measure and assess samples effectively. Relying on Sensigent's proprietary 

NoseChip technology, the MSEM-160 features an array of up to 32 sensors, including nano-

composite sensors (NCA), electrochemical (EC), metal oxide semiconductor (MOS), 

photoionization (PID), as well as temperature and humidity sensors. The instrument houses an air 

sampling pump with a 0.4 LPM capacity to draw the samples into the sensor system. The data is 
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manually processed to identify the gases. But it continuously records the THC, odor, and other 

calibrated gases like NH3, H2S, CH2O, and C2H4. Odor units were measured in OU/m3 as defined 

as per EN13725 (EN13725, 2022), where 1 OU = 0.04 ppm 1- butanol. Two filters are used inside 

the MSEM, to clean the sensors with clean air after the measurement. One single bed air filter 

containing a granular activated carbon purge 1 and a combination of activated carbon and a 13x 

molecular sieve for the mixed bed into purge 2. The filtered and outside air flow is controlled by 

an instrument valve and monitored through operating software.  

The E-nose instrument is equipped with an air sampling pump with a capacity of 0.4 LPM, 

engineered to channel the samples directly onto the integrated sensor array. Although the data 

necessitates manual processing for gas identification using the E-nose system, the system offers 

continuous logging capabilities, recording parameters such as Total Hydrocarbon Content (THC), 

odor, and other specifically calibrated gases, including NH3, H2S, CH2O, and C2H4. The MSEM is 

supplied with a factory calibration for chemical sensors based on EN13725 and ASTM E544. Table 

3.1, reproduced from Manufacturer (2022), displays the corresponding sensor array and cross-

sensitivity, while Figure 3.2 presents an image of the Sensigent© MSEM 160 E-nose. 

Sensor Type Range, ppm Limit, ppm Cross- 

Sensitivity 

TVOC PID 0-200 1000 VOC 

ODOR MOS, NCA 0-2000 5000 Hydrocarbons, 

VOC, 

reducing 

gases, 

oxidizing 

gases 

Hydrogen sulfide, 

H2S 

EC 0-50 100 NH3 0, 

CH3SH <10%, 
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NO2 <20%, 

SO2 <10% 

Ammonia, NH3 EC 0-100 100 H2S, SO2, 

NO2, Cl2 

Ethene, C2H4 EC 0-10 20 CO ,60% 

Formaldehyde, 

CH2O 

EC 0-10 30 CO 15%, H2 

2%, alcohols 

 

Table 3.1 MSEM Sensors cross-sensitivity to other gases 

 

 

Figure 3.2 MSEM 160 E-nose 

The sensor array consists of 32 sensors, each serving a specific function for the E-nose. A detailed 

list of these sensors and their primary purposes can be found in Table 3.2. 

Type Of the Sensor  Primary Purpose 

Dew Point Moisture measurement 

TVOC Gas detection 

ODOR Gas detection 

Alc (EC Sensor) Gas detection 



46 
 

NH3 (EC Sensor) Gas detection 

CH2O (EC Sensor) Gas detection 

C2H4 (EC Sensor) Gas detection 

MOS Pattern Identification 

PID Pattern Identification 

Poly Composite Pattern Identification 

 

Table 3.2 MSEM Sensor Configuration 

 

3.2.3 Bosch BME-688 gas sensor  

 

The Bosch BME688 is a new electronic nose technology development with a Bosch© BME series 

of environmental monitoring sensors. This sensor has multiple capabilities like gas detection, 

humidity measurement, pressure sensing, and temperature monitoring within its compact form 

factor with a size of 3 X 3 X 0.9 mm3 and a sensitivity to a wide spectrum of volatile organic 

compounds (VOCs). A unique proposition of the BME688 is its integration with Bosch's 

proprietary AI suite., which can train the neural network with different classes of samples. This 

helps the sensor integrate with the Internet of Things (IoT) and real-time monitoring in 

interconnected systems. Figure 3.3 shows the image of a BME688 sensor.  
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Figure 3.3 Bosch BME688 sensor 

 

Bosch's AI Studio offers an interface to assist users in developing algorithms tailored for specific 

applications using the BME688 development kit. This platform, underpinned by programming in 

Python, leverages leading-edge machine-learning technologies like TensorFlow, Keras, and 

NumPy. The technical specifications of the BME688 sensor are provided in Table 3.3. 

Parameter Technical Specifications 

Pressure 300 – 1100 hPa 

Humidity 0 – 100% 

Temperature -40 – 85 degree C 

Interface 12C and SPI 

Gas Sensor power consumption < 0.1 mA in ultra-low power mode 

 

Table 3.3 BME688 Technical data 

The BME688 development kit, an array of 8 BME688 sensors, can be integrated with the BME 

AI-Studio Software, ensuring tailored optimization of performance, output data rate (ODR), and 

power consumption based on specific application requirements. The kit’s architecture incorporates 

eight BME688 sensors, an Adafruit© HUZZAH32 Feather board powered by an ESP32 
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microcontroller unit (MCU), a MicroSD card slot for data storage, and a CR1220 coin cell battery 

dedicated to clock operations. The development kit can be connected to Bosch's BME AI mobile 

application through Bluetooth for gas analysis.  

3.2.4 Data Collection and Processing 

 

The signatures from the internal contaminant sources were generated from identified samples 

using two different thermal stress methods depending on the sample. These signatures were 

subsequently monitored using the E-nose. Initially, the E-nose operated in training mode to gather 

sensor data. This data was then processed manually to develop an algorithm through multivariate 

analysis using the proprietary software from Sensigent, culminating in a trained algorithm for 

future predictions. The samples were then tested in similar conditions to test the prediction 

capabilities of these algorithms. The BME688 followed a similar methodology. However, its 

training data was processed via the Bosch AI Studio, generating tailored algorithms. These 

algorithms were subsequently tested using the Bosch BME mobile studio or an integrated 

development environment (IDE) employing the BSEC library.  

3.2.5 Large-Scale Testing at the FAA Tech Center 

The large-scale testing took place at the testing space of FAATC designed to mimic the cockpit 

volume of a Boeing 737. This mock setup comprised a rectangular chamber with dimensions 2.0 

m x 1.82 m x 1.82 m. Though constructed from plywood, the chamber's interior was well insulated 

with an aluminum coating to offer a representative and protective environment. 

• Chamber Specifications: 

o Exterior Construction: Plywood 

o Interior Layer: Aluminum 

o Dimensions: 2.0 m x 1.82 m x 1.82 m 
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• Access Points: 

o A top opening, which served as an exhaust during venting. 

o A side wall opening to facilitate chamber access. 

o Power and light were available inside the space. 

• Heating Mechanism: 

o Employed a heater set to a heat flux of 25 kW/m2, consistent and similar to the 

conditions used in the small-scale tests. 

• Gas Analysis Capabilities: 

o Gas analyzer used to analyze CO, CO2, and O2 concentrations in the chamber.  

o Measurements were taken both at a height of 1.7 m from the floor. 

• E-nose Instrumentation: 

o The MSEM sampling was undertaken 1 m from the floor. 

o The Bosch sensors were positioned at 1 m inside the chamber for 10 minutes during 

the smoldering phase, after which they were removed. 

• Additional gas detection technologies: 

o A VESDA (Very Early Smoke Detection Apparatus) system was integrated with 

the chamber, which operated concurrently with the E-nose to measure and record 

relevant data. 

During the large-scale testing phase, the BME688 sensor was not used for collecting new training 

data. Its primary purpose was to verify the predictions made by algorithms created from earlier 

small-scale experiments using similar samples. Figure 3.4 and 3.5 shows the experimental setup 

at the FAATC. 
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Figure 3.4 FAATC mockup inside and outside view 
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Figure 3.5 FAATC Test-Setup 

 

In a subsequent testing phase, experiments were conducted in a specially designed chamber with 

a volume of 1.30 m3 that could operate under reduced pressure conditions. This chamber's internal 

pressure was reduced to 10.9 psi during the smoldering phase of the experiments. Maintaining 

consistency with the earlier experiments, the heat flux was set at 25 kW/m2 with a similar heater 

setup. Both the MSEM and Bosch sensors were actively employed during these tests. Figure 3.6 – 

shows the actual image of the pressure chamber.  
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Figure 3.6 Low-Pressure Vessel 

 

3.3 Calculations and Algorithms  

 

3.3.1 Light obscuration measurements 

 

Light obscuration measurements were concurrently executed with the E-nose measurements 

during the small-scale tests at UMD. This was performed within the experiment chamber to 

provide supplementary measurements representing the smoke produced from the sample materials. 

Essentially, the light obscuration method gauges the reduction in light intensity caused by the 

particulate matter in a medium. A decrease in light signifies increased density or concentration of 

particles from the smoke. The calculations for this metric were based on equation 1, which 

provides a quantifiable measure of the amount of light obscured by the smoke particles. 
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Obscuration (%) = (1 −
𝐼

𝐼0
) × 100                Equation (1) 

• I0 – Light intensity without any smoke present. 

• I – Light intensity when the smoke is present. 

 

3.3.2 MSEM Data Operations 

 

The MSEM responses were analyzed using the proprietary software provided by Sensigent. The 

calculations were carried out according to the requirements of the study to get the best results. 

Tailored calculations were performed, optimizing the settings within the software's framework to 

derive the most informative and reliable outcomes. 

In the subsections, various data scaling methodologies and normalization procedures used in 

machine learning and multivariate analysis are explored. These techniques are instrumental in 

optimizing the performance of various algorithms employed in data processing. The operation of 

dimensionality reduction methods such as Principal Component Analysis (PCA) and Canonical 

Discriminant Analysis (CDA), clustering algorithms like Soft Independent Modeling of Class 

Analogy (SIMCA), K-Nearest Neighbors (KNN), Support Vector Machines (SVM), and K-Means 

clustering (K-Means), are discussed in detail. 

Signal-to-Noise Ratio Reduction 

The raw data obtained from sensors often contains noise or unwanted signals, which can impede 

accurate analysis. Digital filtering techniques are employed to eliminate artifacts, including high 

and low-frequency noise, thereby enhancing the signal-to-noise ratio (S/N). In the post-processing 

phase of the study, a standardized processing approach was employed for sensor responses. This 

method, denoted as ∆R/R, characterizes the sensor's resistance response relative to a predetermined 
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baseline value, specifically, the resistance at the commencement of a given measurement. 

Mathematically, it's expressed as: 

Sensor Response =
𝑅max−𝑅𝑜

𝑅𝑜
    Equation (2) 

• Ro - Initial resistance at the onset of the measurement. 

• 𝑅max - Peak resistance observed during the measurement 

 

The Savitzky-Golay filter, a heavily used signal processing tool, enhances the signal-to-noise ratio 

in datasets without considerably distorting the inherent signal trends. This tool is the suggested 

and default option by the manufacturer. This filter operates by conducting a local polynomial 

regression on a specific subset of input data points, thus determining the smoothed value for each 

point. Mathematically, the smoothed value 𝑦𝑖
′ for a given data point 𝑦𝑖 is calculated as: 

𝑦𝑖
′ = ∑ 𝑐𝑗𝑦𝑖+𝑗

𝑛
𝑗=−𝑛                        Equation (3) 

Where 𝑐𝑗  are the convolution coefficients determined by the degree of the polynomial and the 

width of the window used for the regression, and 𝑛 is half the width of the window. This method 

ensures that features like maxima, minima, and width of the distribution are preserved, making it 

particularly suitable for datasets with underlying trends that need noise reduction without 

compromising the signal's resolution. 

Baseline Correction 

Baseline correction is essential in multi-sensor measurements to ensure consistent data 

interpretation across sensors. Variations in baseline can arise from differences in sensor 

calibrations, drift, or environmental factors during the measurements. By adjusting for these 



55 
 

deviations, baseline correction enhances the comparability of data, ensuring that observed signals 

are attributed to measured events rather than instrumental inconsistencies.  

The Advanced Minimum Maximum (Adv Min Max) algorithm, the default option from the 

Sensigent, is used in the analysis for baseline correction, which is important when analyzing data 

from a multisensory system to ensure accurate interpretation of the sensed environment. The 

algorithm processes each sample exposure in the sensor response file to compute Δ𝑅 within this 

framework. It achieves this by identifying the single maximum value, 𝑅𝑚𝑎𝑥, from the last three 

data points during the measurement. Concurrently, it estimates the baseline, 𝑅𝑚𝑖𝑛, by assessing the 

linear trend of the 10 points preceding the onset of the sample exposure. The baseline-corrected 

value, Δ𝑅, is then computed using equation 4.  

Δ𝑅 = 𝑅𝑚𝑎𝑥 − 𝑅𝑚𝑖𝑛      Equation (4) 

Normalization and Scaling 

In multi-sensor data analysis, normalization and scaling techniques are important to ensure 

consistent data range across sensors, facilitating more accurate comparative analyses. This 

uniformity in data presentation prevents any single sensor with larger magnitude responses from 

disproportionately influencing multi-sensor fusion outcomes. Furthermore, data on a consistent 

scale provides clearer insights for visualization and pattern recognition purposes. 
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Normalization 

The time-varying sensor responses are arranged along the rows against their respective sensors in 

the column in the matrix representation used for sensor data analysis.  Figure 3.7 Illustrate a sensor 

response from a CSV file. 

 

Figure 3.7 Sensor responses from a CSV file 

Norm1- Area normalization 

"norm1" or L1 norm-based area normalization is a row-wise application on a dataset matrix. To 

elucidate, consider a matrix where each row represents the array of sensor responses for a singular 

signatures or exposure. By applying the "norm1" normalization row-wise, the responses from all 

sensors about a specific sample are scaled such that their cumulative absolute values amount to 

unity. 

Mathematically, for a given row vector 𝑟 = [𝑟1, 𝑟2, … , 𝑟𝑛] in the matrix, the L1 normalization 

process can be formulated as: 

𝑟norm[𝑖] =
𝑟𝑖

∑ |𝑟𝑗|𝑛
𝑗=1

 for each 𝑖 = 1,2, … , 𝑛   Equation (5) 

Following this operation, the totality of the absolute values in each row converges to one. This 

ensures consistent scaling across varied samples and emphasizes the relative importance of each 

sensor's response. 
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Norm2 – Vector Normalization 

The "norm2" or L2 norm-based vector normalization is another valuable approach in this context. 

Unlike the "norm1" method, which emphasizes the absolute cumulative response, the "norm2" 

technique focuses on the Euclidean length of the sensor response vector for a specific sample. 

Considering our matrix, where each row represents an array of sensor responses for a single sample 

or exposure, the "norm2" normalization is applied row-wise. Let's take a row of sensor responses 

𝒓 = [𝑟1, 𝑟2, … , 𝑟𝑛]. Post the L2 normalization, the Euclidean length (or magnitude) of each 

transformed row vector will be unitary. 

Mathematically, the L2 normalization can be described as: 

𝑟norm[𝑖] =
𝑟𝑖

√∑ 𝑟𝑗
2𝑛

𝑗=1

 for each 𝑖 = 1,2, … , 𝑛  Equation (5) 

After this operation, the length of the resultant vector from each row is standardized to one. By 

ensuring that each vector has a consistent length, the L2 norm-based normalization brings out the 

relative directionality and orientation of the sensor responses, which can be paramount for certain 

analytical operations and pattern recognition tasks in multisensory systems. 

Another method, a "none" option, which refrains from applying any normalization to the sensor 

responses, is also explored as part of the study. This approach retains the original scale and 

magnitude of sensor outputs. While normalization techniques often aim to alleviate scale 

discrepancies between sensors, this is tried to study the raw, unaltered concentration-dependent 

response of the sensors. By opting for the "none" method, we were able to observe the direct and 
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true magnitude of the sensor's response to different sample exposures and their prediction 

dependency for the sensors. 

Data Scaling: Mean Centering and Autoscaling 

To focus on variability around the mean, mean centering is employed by subtracting the mean of 

each variable (32 sensor values). Mathematically, for a given data matrix 𝑋, the mean-centered 

matrix is 𝑋𝑐 = 𝑋 − �̅�, where �̅� represents the mean of 𝑋. 

Another data scaling method, autoscaling, is achieved by first mean centering the data and then 

dividing by the standard deviation of each variable. Hence, for a mean-centered matrix 𝑋𝑐 the 

autoscaled matrix 𝑋𝑠 is given by 𝑋𝑠 =
𝑋𝑐

σ
, where σ denotes the standard deviation of 𝑋𝑐. This 

ensures that each column (or variable) of the processed data possesses unit variance. 

Both options are explored according to the cross-validation results for multiple data sets. 

Evaluating mean centering and autoscaling via cross-validation (CV) methods provides insights 

into which technique yields superior class differentiation and identification accuracy and is used 

as the first measure of choosing the right algorithm for the prediction.  

Clustering Algorithms 

Multivariate analysis algorithms are crucial in comprehensively analyzing datasets that encompass 

multiple variables simultaneously. Their primary function is to detect patterns and determine 

relationships within multidimensional data. Given the inherent complexity of many datasets, these 

algorithms become indispensable, offering capabilities such as dimensionality reduction, 

classification, clustering, and regression. These tools aid in simplifying data interpretation, 

ensuring that essential patterns and relationships are not overlooked, and enhancing predictive 
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modeling for the sensor measurements. Table 3.4 – provides information on the algorithms 

explored in this study.  

Algorithms Linearity Supervision 

PCA Principal 

Components Analysis 

Linear Unsupervised 

CDA Canonical 

Discriminant 

Analysis 

Linear Supervised 

SIMCA Soft Independent 

Modeling of Class 

Analogies 

Linear Supervised 

KNN K-Nearest Neighbor Nonlinear Supervised 

K-Means K-Means Clustering Nonlinear Unsupervised 

SVM Support Vector 

Machine 

Nonlinear Supervised 

 

Table 3.4 Various Classification Algorithms and Dimensionality Reduction techniques 

Cross Validation and Prediction Probabilities 

Cross-validation is an integral procedure to assess the robustness and validity of the algorithms. 

By doing the cross-validation operation, the software systematically omits a subset of samples 

from the training set, creating a temporary model using the remaining data according to the chosen 

scaling and classification algorithm. The samples initially set aside are then classified using this 

provisional model. For the CDA algorithm, this iterative process incorporates various counts of 

principal components (PCs), homing in on the optimal number that maximizes cross-validation 

accuracy (%CV). This metric, the %CV, represents the proportion of the omitted samples correctly 

classified using the best number of PCs. Upon finalizing the cross-validation, the system visualizes 

the results in Canonical (or "Mahalanobis") space, offering an intuitive representation of sample 

distributions and class separations. 
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In the Canonical Discriminant Analysis analysis, each predicted sample is assigned a Combined 

Probability (CProb). This metric serves as an indicator of the software's conviction regarding the 

accuracy of a particular classification. The CProb values, which range between 0 and 1, offer 

insights into the confidence level of the prediction, with values closer to 1 indicating higher 

confidence. 

Subsequently, the CProb value for each sample gets translated into a rating based on a 5-star 

system, where five stars epitomize maximum confidence and 1 star represents minimum 

confidence in the classification. An associated metric called the MDist value (Mahalanobis 

distance) is calculated for each prediction. This value gauges the proximity of a given sample to 

the centroid of its assigned class within the training set, as represented in Mahalanobis space. 

Lower MDist values are more favorable, indicating that the sample is tightly clustered around its 

designated class and aligns well with its classification. 

Utilizing a comprehensive CV process within the software framework, employing algorithms like 

K-Nearest Neighbors (KNN), K-Means Clustering (K-means), and Canonical Discriminant 

Analysis (CDA) with both data scaling methods, ensure the selection of the most robust 

combination for precise pattern recognition for a particular training set. 

Principal Component Analysis (PCA) 

Principal Component Analysis (PCA) is a fundamental data visualization and exploration 

technique used in multisensory data analysis. The inherent complexity of dealing with numerous 

sensor responses, often exceeding 32, necessitates the dimensionality reduction capability of PCA. 

This method effectively reduces the data's dimensionality from N sensor responses to more 

manageable M principal components. These components are visually structured: the first principal 
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component (PC1) encapsulates the most substantial variance in the dataset. Subsequent 

components, such as PC2 and PC3, are orthogonal to their predecessors and represent 

consecutively reduced variances. PCA is unsupervised, emphasizing that the algorithm does not 

rely on class labels to discern distinctions between classes. Instead, PCA depends entirely on the 

statistical variances within the dataset, offering an unbiased insight into the data structure. 

Mathematically, the process begins by centering the data matrix 𝑋, resulting in a centered matrix 

𝑋𝑐 = 𝑋 − �̅�, where �̅� is the mean of 𝑋. Subsequently, the covariance matrix 𝐶 of the centered data 

is computed as 

 𝐶 =
1

𝑛−1
𝑋𝑐

𝑇𝑋𝑐        Equation (5) 

with 𝑛 denoting the number of observations. An eigen decomposition of 𝐶 is then performed, 

leading to a matrix 𝐸 of eigenvectors and a diagonal matrix Λ of eigenvalues, satisfying the relation 

𝐶 𝐸 =  𝐸 Λ. These eigenvectors, or principal components, define directions in the original feature 

space that capture the maximum variance. The data can then be projected into a reduced space 

spanned by the first 𝑀 principal components, yielding 𝑌 = 𝑋𝑐𝐸𝑀.  

Canonical Discriminant Analysis (CDA) 

Canonical Discriminant Analysis (CDA) is another advanced multivariate technique 

predominantly employed when dealing with multisensory systems. Unlike PCA, which is 

unsupervised and based on capturing the most variance within a dataset, CDA is a supervised 

method requiring known class memberships for its operation. The ultimate objective of CDA is to 

maximize the distance between the means of different classes while minimizing the scatter or 

variance within each class. This facilitates enhanced separation and, thus, better discrimination 

between classes based on the sensor readings.  
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Given a dataset 𝑋 with known class labels, the between-class scatter matrix 𝑆𝐵 and the within-

class scatter matrix 𝑆𝑊 are computed. The goal of CDA is to find a transformation matrix 𝑊 that 

will maximize the ratio of the determinant of the between-class scatter to the within-class scatter. 

Mathematically, this can be represented as: 

𝑊 = argmax/W
|𝑊𝑇𝑆𝐵𝑊|

|𝑊𝑇𝑆𝑊𝑊|
   Equation (6) 

Once this transformation matrix is determined, the dataset can be projected into a new space 

wherein the classes are optimally separated. CDA's strength is its inherent focus on class 

separation, making it particularly effective for classification tasks in multisensory systems.  

SIMCA Analysis 

The Soft Independent Modeling of Class Analogy (SIMCA) technique is tailored for complex 

datasets commonly encountered in multisensory systems with multiple observations. Central to 

SIMCA's interpretive power is its utilization of Q versus 𝑇2 plots, which serve as graphical 

representations to delineate typical observations from potential outliers. The 𝑇2 statistic, 

colloquially termed as Hotelling's 𝑇2, measures the extent to which an observation is projected 

within the subspace demarcated by the model's principal components. This is mathematically 

represented by: 

𝑇2 = (𝑥 − μ)𝑇𝑃Λ−1𝑃𝑇(𝑥 − μ)   Equation (7) 

Here, 𝑥 is the mean-centered data point, μ symbolizes the dataset's mean, 𝑃 denotes the matrix of 

principal component loadings, and Λ is a diagonal matrix comprising the eigenvalues. The Q 

statistic, often referred to as the squared prediction error (SPE), encapsulates the residual 

difference between actual data and the predictions rendered by the model. It is articulated as: 
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𝑄 = 𝑒𝑇𝑒     Equation (8) 

Where 𝑒 is the residual vector emerging from reconstructing 𝑥 via its related principal components. 

Through the application of the Q versus 𝑇2 plots, data analysts are equipped to swiftly reduce 

observations that align seamlessly with the constructed model from those that deviate. 

KNN Algorithms 

The K-Nearest Neighbor (KNN) classification algorithm, grounded in nonlinear cluster analysis, 

leverages spatial proximity to determine class assignments in supervised machine learning. In 

essence, for a given unclassified observation, KNN discerns 'k' nearest training samples to it, often 

using the Euclidean distance as the determining metric. The object of interest is then ascribed to 

the class most predominant among its neighbors. In practice, for k = 1, the classification is 

straightforward, as the object is unequivocally assigned to the class of its singular nearest neighbor. 

It's worth noting that the optimal value of 'k' is data-dependent: while larger 'k' values can mitigate 

the influence of noise on the classification, they might concurrently blur the class boundaries. 

𝑑(𝑥, 𝑦) = √∑ (𝑥𝑖 − 𝑦𝑖)2𝑁
𝑖=1     Equation (9) 

The Euclidean distance between two points x and y in an N-dimensional space is expressed as per 

the above equation. 

K-Means Algorithms 

The K-Means clustering algorithm is a partitioning method that segregates 𝑁 observations into 

𝐾 distinct, non-overlapping clusters. The principal objective is to assign each observation to a 

cluster such that it belongs to the cluster with the nearest mean. The essence of K-Means lies in its 

simplicity: each observation is associated with the cluster whose centroid — the arithmetic mean 
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position of all the points in that cluster — is nearest to it. This proximity is commonly gauged 

using the Euclidean distance as a metric. The algorithm optimizes the placements of centroids to 

minimize the within-cluster sum of squares (variance), ensuring that the overall spread or scatter 

within each cluster is minimized. Iteratively, data points are assigned to the nearest centroid, and 

the centroid's position is recalibrated based on the points associated with it. Mathematically, the 

objective function 𝐽 that K-Means seeks to minimize is: 

𝐽 = ∑ ∑ ||𝑥 − μ𝑖||
2

𝑥∈𝐶𝑖

𝐾
𝑖=1    Equation (10) 

𝐶𝑖 represents the 𝑖𝑡ℎ cluster, μ𝑖 is the centroid of cluster 𝐶𝑖 and 𝑥 is a data point within cluster 𝐶𝑖. 

This two-step process is repeated until convergence is achieved, meaning centroids no longer 

change significantly. One inherent assumption of K-Means is that clusters are spherical and 

roughly of the same size, which directly arises from its reliance on variance as a measure of cluster 

scatter and the use of Euclidean distance.  

Support Vector Machine (SVM) Algorithms 

The Support Vector Machine (SVM) is a sophisticated supervised machine learning technique 

predominantly designed for binary classification, though it can also tackle multiclass challenges. 

Notably, SVM often outperforms linear discrimination algorithms like PCA and CDA, especially 

when dealing with intricate datasets that exhibit inherent non-linearity. At its core, SVM aims to 

identify the best hyperplane that distinctly divides the two classes. In simpler two-dimensional 

scenarios, this hyperplane manifests as a straight line, but in more complex multi-dimensional 

spaces, it evolves into a plane or even a more intricate hyper-surface. One of the distinct attributes 

of SVM is its adeptness at managing non-linear data by projecting it into a higher-dimensional 

space, a feat achieved through the "kernel trick". The data points lying nearest to this hyperplane, 
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known as "support vectors", essentially shape and define its optimal positioning. SVM's 

overarching goal is to amplify the distance, or margin, between the identified hyperplane and the 

closest data point from each class. 

3.4 Bosch BME688 Measurements 

 

The integrated Micro-Electro-Mechanical System (MEMS) heater in BME688 plays a critical role 

in the gas measurement. The heater profile in the BME688 refers to a predetermined sequence of 

temperature setpoints and durations, which dictates how the heater is cycled on and off and at what 

temperatures during the gas measurement process. The heater profile (HP) is a significant 

parameter because different gases may have varying optimal temperatures for detection. In this 

study, multiple heater profiles were employed within the development kit with different measuring 

cycle times. Each heater cycle was assigned to two sets of sensors to ensure comprehensive data 

collection. Also, all the sensors were operated under the RDC-1-0 (Repeating Duty Cycle) 

continuous duty cycle (No sleeping cycle). Each duty cycle is an iteration of a heater profile. The 

duration of a scanning cycle is equal to the duration of the heater cycle, and the duration of each 

Sleeping Cycle is always equal to the duration of a Scanning Cycle. This operational mode led to 

an average power consumption of 12mA for each full cycle. 

In this study, multiple heater profiles were employed, notably HP-301, HP-354, HP-411, and HP-

501 and operated with a RDC-1-0 continuous duty cycle. Figure 3.8 shows the heater profiles and 

the temperatures.  
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The capabilities of the BME AI Studio are used to train the neural network, focusing solely on the 

Gas Data Channel for our data inputs. The dataset was judiciously partitioned, allocating 70% for 

training and reserving 30% for validation to gauge the model's performance on unseen data. To 

optimize the sensor's neural network, the Adam optimizer was employed. This optimizer uses its 

adaptive moment estimation properties, effectively blending the strengths of the well-regarded 

optimization techniques: AdaGrad and RMSprop. Such a combination fosters rapid convergence 

and skillful navigation of the weight space. To promote computational efficacy and occasionally 

hasten convergence, training data was divided into batches, each consisting of 32 examples. It 

underwent an exhaustive training routine spanning up to 2048 epochs to ensure the model's 

Figure 3.8 Heater profiles and temperatures 
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adaptability and precision further. Emphasizing the significance of an epoch, it embodies a full 

forward and backward traversal of the entire dataset through the neural network.  

3.5 Samples Used in the Study 

 

For this study, a diverse set of samples were collected with specific areas of interest: avionics, 

aircraft cables, and potential nuisance sources in the aircraft cockpit. These divisions were pivotal 

in comprehensively understanding and analyzing each subset's distinct properties and 

characteristics. Table 3.5 itemizes the samples under each category that were used during the small-

scale testing. 

PRINTED CIRCUIT BOARDS (PCB) 

Identification Number Sample original Serial 

Number 

Specification 

A1 200-09058-000 KX 155A Audio Board 

A2 634-2698-002 ATR Connector 

A3 105-02307-00 Transducer 

A4 153-018105-02 Inverter Board 

A5 634-3517-005 Chassis Adapter 

A6 440-00059-03 

NEC, NL10276BC20-04 

GDU Display 

A7 - Multi-Function Displays 

A8 105-02133-00 Navigation System 

A9 FR-4 1/8” Fire Retardant Garolite 

WIRE SAMPLES 

B1 10/0.1 Equip Standard 

VESDA Testing Cable 

PVC Wire 

B2 M81381 / 12-20 Aromatic Polyimide 

insulation 

B3 M22759/ 34-16-9 ETFE (Tefzel coating) 

B4 BMS13-60-19 PTFE 

B5 55A0811-20-9 ETFE 

NUISANCE SOURCES 

WO Hardwood - 

BR Bread - 

Table 3.5 Samples used in the small-scale experiment 

 

https://www.limitlessaerospace.com/aircraft-model/rfq/rockwell-collins/634-3517-005/
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A Major part of the study emphasized the examination of Printed Circuit Boards (PCBs) given 

their presence on the flight deck of an aircraft. A representative selection of these PCB samples is 

depicted in Figure 3.9. To ensure uniformity and manageability, each of these samples were cut 

into a 7.6 X 7.6 square centimeter size, which was subjected to thermal impact using the heater. 

The subsequent results chapter will comprehensively present an in-depth visual documentation, 

along with discussions on the impacts of heating and other significant observations. 

 

Figure 3.9 Various PCB samples used in the small-scale experiment 

 

In-flight occurrences of vapors generated from recirculation fans have been frequently reported. 

Such phenomena can be attributed to various factors, including overheated windings, short circuits, 

or possible abrasions of the fan blades with external materials. This critical area was explored with 

investigations into printed circuit boards and wire insulations during the testing sessions at the 
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FAA. Notably, two recirculation fans were procured through industry donations, which were 

subsequently subjected to failure testing, with all relevant readings recorded with E-nose and 

BME688 sensors. A comprehensive list of samples employed for the large-scale testing at the FAA 

technical center is detailed in Table 3.6, and Figure 3.10 provides images of the recirculation fans 

used in the study. 

 

Sr No Sample original Serial Number Assigned Name Type 

PRINTED CIRCUIT BOARDS 

1 105-01134-00 Ver 3 AE Unknown 

2 105-02109-00 Ver 1 AC Unknown 

3 S4151-009060720020 AF Unknown 

4 FR – 1/8” FR Fire Retardant Garolite 

WIRE SAMPLES 

5 M81381 / 12-20 AP Aromatic Polyimide 

Insulation 

6 M22759/ 34-16-9 ETFE ETFE (Tefzel Coating) 

7 BMS13-60-19 PTFE PTFE 

8 M5086/1-22-9 PVC PVC 

FAN SAMPLES 

9 645405-1 HF Recirculation Fan 

10 4100941D BF Fan Mixed Flow 

NUISANCE SOURCES 

11 SKYDROL 500 B-4 HY Hydraulic Oil 

12 MOBIL JET OIL II JO Aviation Jet Oil 

 

Table 3.6 Samples used in the large-scale testing 
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Figure 3.10 Recirculation Fans collected from the industry for testing 

3.6 Experimental Protocols  

 

The various samples utilized in the study were systematically categorized into four distinct groups: 

Printed Circuit Boards (PCBs), Aircraft Cables, Recirculation Fans, and Nuisance Sources. 

Each category followed a protocol to create signature readings, ensuring repeatability and 

precision: 
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1. Printed Circuit Boards and Nuisance Sources 

To capture the gaseous signatures from the samples, the MSEM 160 and Bosch BME688 were 

powered on, allowing a warm-up duration of 30 minutes, ensuring sensor stabilization. Following 

this stabilization period, the photodiode was activated, allowing us to obtain baseline light 

obscuration readings under ambient, smoke-free conditions. The heater was then engaged, and a 

15-minute interim was observed to ensure a consistent thermal profile. The E-nose was subjected 

to two sequential measurement cycles to further understand and capture pre-test data. With these 

preliminary readings in place, the sample was placed near the heater, receiving direct heat exposure 

for a 10-minute duration. Upon completion of this heating period, the heater was turned off, and 

the MSEM initiated a series of five measurement cycles. Bosch BME688 sensor was run 

simultaneously to capture gas sensor profiles. For predictive analytics objectives, this entire 

procedure was repeated using either the same sample or a closely related variant to produce the 

signatures. 

2. Aircraft Cables 

To study the off-gassing vapors emanating from cable insulations, a test transformer made by 

Xtralis was utilized, designed explicitly for wire burn tests. This transformer had a conversion 

capability of 110 V to 6.3 V, with a 20 A output rating. For the tests, wire samples were prepared 

to a length of 70 cm, with both ends stripped up to 15mm. These designed samples were then 

connected to the transformer terminals. The transformer was remotely activated for 60 seconds, 

inducing the wires to produce smoke due to the applied voltage. 

This resultant smoke was subsequently subjected to analysis using the electronic nose (E-nose). A 

minimum of five measurement cycles were conducted to ensure robustness in the readings. Each 

of these cycles was composed of three stages: a pre-purge stage (60 seconds), an active 
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measurement stage (60 seconds), and a post-purge stage (60 seconds). Alongside the E-nose 

measurements, light obscuration readings were simultaneously captured prior and during the 

measurement to provide a comprehensive overview of the smoke characteristics along with the 

cable integrity. 

3. Large Scale Experiments 

In the comprehensive experiments conducted at the FAATC, the heater was set to a heat flux of 25 

kW/m2, positioned at the central juncture of an 180 x 200 cm2 mock space. A 91 cm ultra chemical-

resistant Tygon tubing was used for sampling for the E-nose at 1m above the floor level. 

Concurrently, gas analysis sampling for carbon monoxide (CO) and carbon dioxide (CO2) and 

Oxygen (O2) concentrations was placed at an elevated height of 170 cm from the floor. The Bosch 

BME688 sensor was kept at the 1m level from the floor, ensuring parity in sampling heights. A 

video recording was operational to ensure comprehensive visual documentation of the procedure 

when the samples were placed near the heater. After the heating duration of 10 minutes, the sample 

was manually retracted, and E-nose readings were recorded for pattern recognition up to five 

measurement cycles. 

A sophisticated VESDA monitoring system, integrated with four sampling ports on the ceiling of 

the box, was configured to predetermined light obscuration thresholds: 0.0760 %/m instigating a 

preliminary Alarm, 0.1141 %/m initiating Action, 0.1902 %/m triggering Alarm 1, and 0.2281 %/m 

actuating Alarm 2 as per the manufacturers calculation for the space. Prior to the smoldering 

experiments, the VESDA system was already operational. In parallel, the E-nose maintained a 

continuous monitoring mode throughout the combustion phase. The inclusion of the BME688 

sensor was imperative to gauge the predictive efficacy of algorithms precursory developed during 

the experiments at UMD. 
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For the study on the cable insulations, samples measuring a length of 90 cm were prepared, with 

both ends stripped to up to 15mm. Electrical voltage was then applied to these samples for 60 

seconds using the Xtralis wire burner. During this period, the light obscuration measurements were 

completed along with the E-nose measurements.  

For the fan experiments, an external aircraft power source delivering 400 Hz and 115 V was 

utilized to energize the fans. Given the specific interest in capturing signatures resulting from fan 

overload or prolonged usage, a specialized method was devised. An external resistance to the fan 

operations was introduced to simulate the effects of overload. This was accomplished through a 

custom-built mount, onto which the fans were affixed; a steel plate welded explicitly for this 

purpose from the top provided resistance by obstructing the impeller's motion. With the impeller 

effectively getting locked against the steel plate during the operation, the motor winding was 

driven to its limits, emitting gaseous signatures indicative of stress and potential failure. Figure 

3.11 depicts the setup used for fan failures.  

 

 

Figure 3.11 Experimental Setup for Fan Failure at the FAATC 
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4 RESULTS AND DISCUSSION 

 

4.1 Gas Analysis Using E-Nose Capabilities in Small-Scale Testing 

 

4.1.1 Aviation Cables 

 

While the aviation cables utilized in the study encompassed various wire gauges, making a direct 

comparison of gas concentrations is inappropriate, a qualitative assessment of the gases emanating 

from these materials was conducted using the E-nose capabilities. In this approach, Total Volatile 

Organic Compounds (TVOC) in mg/m³, alongside concentrations of Alcohol (Alc), Ammonia 

(NH3), Formaldehyde (CH2O), and Ethylene (C2H4) in parts per million (ppm), were collected. 

Additionally, odor measurements were captured in Odor Units per cubic meter (OU/m³), utilizing 

the advanced sensing capabilities of the E-nose. This comprehensive data collection underscores 

the commitment to a thorough and nuanced understanding of the gas profiles generated from 

diverse aviation cable types, contributing significantly to the field's knowledge base, and 

enhancing safety and material selection protocols in aviation contexts. 

The average gas concentrations are derived from the sensor values during the E-nose measurement 

cycle, which is succeeded by a pre-scale measurement phase during which outside gases are not 

sampled. The maximum value represents the peak response recorded across the various 

measurement cycles for all the samples tested from similar classes. Table 4.1 – shows the various 

gas measurements by the E-nose.  
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SAMPLE B1 (PVC ) B5 (ETFE) B3 (ETFE -

Tefzel Coating) 

B4 (PTFE) B2 (Aromatic 

Polyimide) 

 Average Maximum Average Maximum Average Maximum Average Maximum Average Maximum 

TVOC 

[mg/m3] 
13 18 15 24 13 19 10 18 6 14 

Alc 

[ppm] 
0 1 2 4 2 4 2 2 5 10 

NH3 

[ppm] 
0 0 0 0 0 0 0 0 0 0 

CH2O 

[ppm] 
0 1 1 2 1 2 1 2 1 6 

C2H4 

[ppm] 
1 2 3 7 3 7 4 5 3 9 

ODOR 
[OU/m3] 

236 518 331 636 439 667 399 427 486 671 

 

Table 4.1 Gas Analysis for Different Aviation Cables 

 

Figure 4.1 Maximum TVOC Values Recorded for the aviation cables 

 

Focusing exclusively on these specific gases may not substantially aid the detection and 

identification processes. The Alc, NH3, C2H4, and CH2O evolved from the cable samples exhibit 

characteristics akin to noise, offering limited utility for effective detection. This insight 
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underscores the imperative for a more holistic and diversified early detection and identification 

approach. 

4.1.2 Printed Circuit Boards and Other Materials 

 

The printed circuit boards, sourced from diverse avionics, encompassed a broad array of electronic 

components. The potential inclusion of Total Volatile Organic Compounds (TVOC) as an auxiliary 

early detection metric emerged as a viable strategy to bolster detection endeavors. The analysis 

reported an average TVOC level of 150 mg/m³, signifying its discernible presence compared to 

other gases. Conversely, the other four gases under scrutiny registered levels similar to background 

noise, thereby underscoring their limited utility for effective detection in this context. 

SAMPLE A1 A2 A3 A4 A5 A6 A7 A8 A9 

 Avg Max Avg Max Avg Max Avg Max Avg Max Avg Max Avg Max Avg Max Avg Max 

TVOC 
[mg/m3] 131 194 97 133 60 77 51 75 178 207 80 121 178 248 125 161 76 100 

Alc 

[ppm] 2 6 3 11 5 9 2 4 6 12 3 7 2 6 2 4 2 6 

NH3 

[ppm] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

CH2O 

[ppm] 1 2 1 4 3 6 1 1 3 6 2 3 1 3 1 2 1 4 

C2H4 

[ppm] 3 7 2 9 7 15 3 5 6 11 5 9 2 8 3 9 5 12 

ODOR 
[OU/m3] 1411 1876 867 1504 651 940 540 920 1566 1867 1227 1872 1121 1666 1003 1886 735 1225 

 

Table 4.2 Gas Analysis for Printed Circuit Board Samples 
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Figure 4.2 Maximum TVOC Levels Recorded for Printed Circuit Boards 

 

The analysis of other nuisance sources revealed distinct gas emission profiles. The bread sample 

exhibited an average TVOC level of 169 mg/m³, while Hardwood registered a higher average of 

264 mg/m³. Additionally, the Alcohol (Alc) levels in these samples were markedly elevated 

compared to the printed circuit boards (PCBs), with readings of 39 for bread and 99 for Hardwood, 

respectively 
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SAMPLE Bread Hardwood 

 Average Maximum Average Maximum 

TVOC [mg/m3] 133 169 205 264 

Alc 

[ppm] 
21 39 38 99 

NH3 

[ppm] 
0 0 0 0 

CH2O 

[ppm] 
3 7 2 6 

C2H4 

[ppm] 
1 2 1 4 

ODOR 

[OU/m3] 
1611 1881 1162 1886 

Table 4.3 Gas Analysis for Other Materials 

 

4.2 Light Obscuration Measurements in Small-Scale Testing 

 

In the present scenario, although the aircrew can detect smoke in occupied areas, there is often a 

significant time lag between the onset of an FSF event that produces burning odors and the 

observation of visible smoke. The occurrence of these burning odors, in the absence of continuous 

smoke, may lead to confusion among the crew members due to the lack of consistent and reliable 

indication from the smoke detection and alarm systems. This gap in detection presents a challenge 

for ensuring prompt and appropriate responses to potential fire events on board.  

The amount of smoke generated from the multi-stranded, single cable exhibited distinct 

characteristics for different samples. Specifically, the B2 and B4 samples generated considerably 

less smoke than their B1, B3, and B5 counterparts. A visual assessment further revealed differences 

in the resilience of various insulations under these conditions. By the 60-second mark, PVC and 

PTFE insulations had sustained significant damage, while the ETFE insulation demonstrated 

considerable durability, preserving its structure significantly. While undergoing a color 
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transformation to a deep black, the Aromatic Polyimide insulation commendably retained its 

structural integrity, effectively concealing the metal wires within. 

In the tests involving Printed Circuit Boards and nuisance sources, the chamber became heavily 

saturated with thick smoke, leading to a complete, or 100%, obscuration. 

 

Sample Percentage Obscuration 

B2 (Aromatic Polyimide) 14.62 

B4 (PTFE) 12.85 

B1 (PVC) 21.70 

B5 (ETFE) 46.86 

B3 (ETFE with Tefzel) 55.16 

 

Table 4.4 Light Obscuration measurements for aviation cables 

 

4.3 Gas Analysis Using E-Nose Capabilities in Large-Scale Testing 

 

4.3.1 Aviation Cables 

 

The gas sensor measurements provide valuable insights into the gases released during smoldering, 

mirroring trends observed in small-scale experiments. To ensure accuracy of the values, values 

were adjusted for baseline measurements. This baseline was established by recording sensor values 

under ambient conditions for five minutes prior to the commencement of each experiment. 

Notably, the TVOC levels from the newly analyzed PVC cables, which were not part of the initial 
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small-scale experiments, registered significantly higher than their counterparts. Similarly, the odor 

measurements followed a comparable trend. 

SAMPLE AP ETFE PTFE PVC 

 Average Maximum Average Maximum Average Maximum Average Maximum 

TVOC 

[mg/m3] 
6 12 4 20 3 9 12 29 

Alc 

[ppm] 
2 4 2 5 1 2 1 3 

NH3 

[ppm] 
0 0 0 0 0 0 0 0 

CH2O 

[ppm] 
1 3 1 4 1 2 0 1 

C2H4 

[ppm] 
5 10 3 13 3 6 1 4 

ODOR 

[OU/m3] 
222 460 150 558 167 249 318 887 

 

Table 4.5 Gas Analysis for Aviation Cables in Large-scale testing 

 

4.3.2 Printed Circuit Boards and Other Sources 

 

While the measurements for Alcohol (Alc), Ammonia (NH3), Formaldehyde (CH2O), and Ethylene 

(C2H4) registered minimal values, the Total Volatile Organic Compounds (TVOC) levels from the 

Printed Circuit Boards (PCBs) were observed to be higher than those from external contaminant 

sources such as Hydraulic Oil (HY) and Jet Oil (JO). Moreover, the TVOC levels from the fans 

were also considerably elevated compared to the PCBs and other samples. This observation 

necessitates acknowledging the distinct setup used for the fans, wherein they were intentionally 

made to fail. This different setup could influence the TVOC levels, contributing to the observed 

measurement disparity. 
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SAMPLE AC AE AF FR BF HWF HY JO 

 Avg Max Avg Max Avg Max Avg Max Avg Max Avg Max Avg Max Avg Max 

TVOC 

[mg/m3] 

27 41 28 35 10 13 20 28 88 122 50 63 1 2 10 15 

Alc 

[ppm] 

0 1 1 2 0 1 1 2 13 25 5 9 0 0 2 4 

NH3 

[ppm] 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

CH2O 

[ppm] 

0 0 0 1 0 0 0 1 7 12 4 6 0 0 1 2 

C2H4 

[ppm] 

0 1 1 3 1 2 1 3 2 2 9 15 0 0 3 7 

ODOR 

[OU/m3] 

84 223 204 366 147 405 269 543 1547 1887 1218 1873 16 24 55 112 

 

Table 4.6 Gas Analysis for PCBs and Other materials in Large-scale testing 
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Figure 4.3 Maximum TVOC Levels Recorded for Printed Circuit Boards and Other Sources in 

Large-scale testing 

 

 

4.4 Light Obscuration Measurements using VESDA 

 

The VESDA VEP was employed in the FAATC Mockup tests to analyze the response time among 

various systems in the study. Additionally, the maximum light obscuration measurements recorded 

by the VEP offered valuable insights into the smoke levels associated with different materials. 

Within the VESDA VEP, obscuration was quantified as a percentage obscuration per meter (% 

obscuration/m), with a threshold of 32.8 % per meter for the laser chamber. 

The average maximum measurements mirrored the trends observed in small-scale testing. 

Specifically, the PTFE and Aromatic Polyimide samples generated less smoke than the PVC and 

ETFE cables. Despite producing a significant amount of smoke, the ETFE cable preserved its 

mechanical integrity. In contrast, the PVC cable exhibited charring and fragmentation. The 

Aromatic Polyimide (AP) cables showcased superior integrity compared to the PTFE cables, with 
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less insulation damage observed. Detailed average peak responses for the cables are presented in 

Table 4.7. 

Sample Obscuration (%/m) Sustained Structural Integrity 

AP 7.15 %/m High 

PVC 32.80 %/m Low 

PTFE 7.08 %/m Medium 

ETFE 32.80 %/m High 

 

Table 4.7 Light Obscuration measurements from VESDA 

All the Printed Circuit Boards hit the threshold value of 32.8 during all the measurements, and the 

Jet oil and Hydraulic oil samples registered an average measurement of 23.95 %/m. 

 

Figure 4.4 ETFE (TOP) (A) At the point of first visible smoke, (B) 20 seconds from the first 

smoke and (C) At the end of 60 seconds, PVC (Bottom) (A) At the point of first visible smoke, 

(B) 20 seconds from the first smoke and (C) At the end of 60 seconds 
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Figure 4.5 PTFE (TOP) (A) At the point of first visible smoke, (B) 20 seconds from the first 

smoke and (C) At the end of 60 seconds, AP (Bottom) (A) At the point of first visible smoke, (B) 

20 seconds from the first smoke and (C) At the end of 60 seconds 

4.5 Comparison between Visual, VESDA and E-nose detection 

 

The FR boards subjected to testing exhibited the first visible signs of smoke after three minutes of 

thermal stress, followed by uninterrupted smoke production. The E-nose's TVOC responses 

aligned with this, showing an initial drift from the baseline measurement around the 200-second 

mark and continuously registering higher levels, thereafter, as depicted in Figure 4.6. The odor 

sensor exhibited a delayed response compared to the TVOC sensors, with a noticeable drift 

occurring at 260 seconds, as illustrated in Figure 4.7. 

The VESDA system exhibited a rapid response in detecting the smoke, noting alterations to the 

baseline measurement starting at 180 seconds from the placement of the sample. For the FR-6 and 

FR-7 samples, the Fire-1 alarm was activated at 27 and 44 seconds, respectively. This was closely 

followed by the Fire-2 Alarm, which sounded at 30 and 46 seconds for the FR-6 and FR-7 samples, 
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respectively. The brief interval between these alarms is noteworthy, especially considering the 

volume of smoke produced during this phase. The system reached a 32.8 %/m threshold in a mere 

74 seconds from the initial detection, underscoring its precision and reliability in monitoring 

evolving conditions. This prompt detection is illustrated in Figure 4.8. 

 

Figure 4.6 TVOC levels measured by the E-nose. 

 

Figure 4.7 Odor measurements by the E-nose 
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Figure 4.8 VESDA Smoke detection for two FR samples 

 

 

Figure 4.9 (TOP) FR-6 at (A) Time of placement of the sample (B) 3 minutes into the testing (B) 

6 minutes into the testing 
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4.6 Gas Analysis for Large-scale Testing 

 

In the mockup chamber at the FAATC, a comprehensive gas analysis focusing on CO, CO2, and 

O2 concentrations was conducted. CO and CO2 measurements were consistently found within the 

background levels throughout the testing phase without any remarkable change. Specifically, CO 

concentrations fluctuated between 0.012% and 0.014% vol, and the O2 concentrations remained 

stable around the ambient level of 21.6% vol. The CO2 levels temporarily doubled before reverting 

to their initial values, reaching a maximum average threshold at 0.10% vol. During the initial stages 

of producing dense smoke, there was a noticeable increase in CO2 levels. However, since these 

levels returned to normal throughout all experiments, this study did not investigate this 

phenomenon in more detail. 

However, these levels are still within the noise threshold compared to a flaming fire condition. 

These observations indicate that relying solely on CO, O2 consumption, and CO2 measurements 

for detecting smoldering events, particularly in the context of PCB samples from avionics, might 

yield unreliable results, and alternative detection methodologies could be integrated to enhance 

accuracy. Figure 4.10 shows the changes recorded in the gas analysis for an FR board sample.  

 

Figure 4.10 CO2, O2, and CO measurements recorded for an FR board sample 
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4.7 Explorative Multivariate Analysis of the Aviation Cables during Small-Scale-Testing 

 

In this part, data acquisition was conducted using an electronic nose (E-nose) apparatus, followed 

by uniform post-processing protocols to ensure consistency across the datasets. Utilizing the 

Sensigent Proprietary software suite, multivariate analyses were performed. The software 

facilitated cross-validation with a predetermined training and validation data partition, which 

served to yield a cross-validation confidence metric. This metric estimates the likelihood of 

accurate prediction on subsequent production data. For the algorithms developed with the Bosch 

BME sensor suite, the dataset was bifurcated into a 70-30 split, with 70% utilized for training and 

the remaining 30% for validation purposes. 

The aggregated data set, referred to as the 'Training set,' was employed for both the development 

and validation of the algorithms' predictive models. After this phase, an independent 'Prediction 

set,' comprised of production data derived from identical or similar sources, was utilized to assess 

the algorithms' predictive proficiency. The production data was entirely separate from the training 

and validation sets to ensure an unbiased model performance evaluation in each methodology. The 

cross-validation approach was not limited to a single model assessment but was extended to 

compare various machine learning models. This comparative analysis aimed to identify the model 

with the highest predictive accuracy potential, thereby suggesting the most reliable model for 

practical application in predicting outcomes with unseen production data. 

Various aircraft cables, each distinguished by their unique insulation attributes, were tested for the 

prediction capabilities of E-nose through multivariate analysis. Four types of these cables were 

used at this stage of the study. B1 (PVC), B2 (Aromatic Polyimide), B4 (PTFE) and B5 (ETFE). 

Initially, five samples of each cable variant were subjected to the thermal impact setup, with each 
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sample undergoing five distinct measurement cycles. An additional three specimen for each cable 

type were then evaluated to analyze the prediction reliability of the E-nose responses and 

algorithms, with 2 predictive cycle measurement for each type. 

Ni et al. (2008) adopted the Principal Component Analysis (PCA) and K-Nearest Neighbors 

(KNN) for their study. Other algorithms like, Support Vector Machines (SVM), K-Means 

clustering, Canonical Discriminant Analysis (CDA), and Soft Independent Modeling of Class 

Analogies (SIMCA) were explored in this study. 

All the sensor responses were processed into the same scale by ∆R/R. All four specimens were 

analyzed under two distinct data-centering techniques: Mean Centering and Autoscaling, along 

with area (Norm1) and vector (Norm2) normalization and without normalizing the data. By 

comparing the non-normalized data with its normalized counterpart, the goal is to interpret the 

underlying influences of concentration on sensor readings and its subsequent affect on predictive 

accuracy.  

The sensor responses from the five samples were averaged to prepare a training set for the samples 

named ‘Training Set-1’. Upon executing cross-validation of the training set for these cable 

insulation samples, the KNN model, in conjunction with the Mean-centering technique for Norm1, 

showed a correction probability of 70%. While the MSEM does not incorporate the SVM 

algorithm in its cross-validation options, the SVM independently showcased a correct rate of 

96.3%. On evaluating the classification performance of various algorithms using Autoscale under 

Norm1, K-Means clustering classified all the samples, achieving 100% accuracy. Meanwhile, 

other models, including KNN, CDA, SVM, and SIMCA, demonstrated commendable performance 

with an accuracy of 91.6%, as one of the 12 samples was misclassified. Table 4.8 shows the correct 

performances of various algorithms with the samples. 
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 KNN K-Means CDA SVM SIMCA 

B1 (PVC) 6/6 6/6 6/6 6/6 6/6 

B2 (Aromatic 

Polyimide) 

6/6 6/6 6/6 6/6 6/6 

B4 (PTFE) 4/6 6/6 4/6 4/6 4/6 

B5 (ETFE) 6/6 6/6 6/6 6/6 6/6 

 

Table 4.8 Multivariate analysis of the cables using Norm1, Auto-scaling 

 

From the analysis of various combinations of data-scaling and normalization techniques, the 

distinction between Norm1 and Norm2 methods appeared to have minimal influence on various 

multivariate algorithms' predictions. Notably, the classification accuracies consistently surpassed 

those predicted through the cross-validation operation. For subsequent samples, primary reliance 

was on the mean-centering and Autoscaling approach, complemented by cross-validation results. 

The similarity in experimental setups and samples must have resulted in akin signatures and raw 

sensor responses even when the data is not normalized, which seemingly did not deter the 

prediction performance. Other combinations of mean-centering and two data-scaling approaches 

have been studied but showed less accuracy than Norm1 with Autoscaling. Figure 4.11 shows the 

PCA plot under different data-scaling and normalization methods for training set-1. 
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Figure 4.11 The CDA plot for Training Set-1. Figure (A) utilizes norm1 with Mean-centering, 

(B) employs norm1 with Autoscale, (C) applies no normalization but uses Autoscale, and (D) 

showcases results with no normalization paired with Mean-centering 
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Figure 4.12 K-Means goodness value for samples with Training Set -1 

 

Figure 4.13 CDA Algorithm M-Distance Values for Various cable insulations 
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Figure 4.12 and 4.13 shows the Goodness Value (Gvalue) and Mahalanobis Distance (MDisatnce) 

value for various samples with K-Means and CDA algorithms. In applying the K-Means algorithm 

for the samples, the "Goodness Value" (Gvalue) is introduced as a metric reflecting the confidence 

level of the algorithm regarding its classification predictions. A lower Gvalue is indicative of better 

classification confidence. Notably, a Gvalue hovering around 1 is perceived as optimal, while any 

value less than 4 suggests that the classification into the respective class is reliable. However, for 

illustration purposes any misclassifications were adjusted to a Gvalue of 0. All the sample's Gvalue 

were found to be near one, indicative of a confident classification within the training set. 

For the CDA (Canonical Discriminant Analysis) assessment, another crucial parameter, termed the 

"Mahalanobis Distance" (MDistance), was employed. This parameter quantifies the proximity of 

the predicted sample to its respective training class within the Mahalanobis space. Similar to the 

Gvalue, for representation any misclassifications in this approach adjusted to a MDistance of zero. 

Notably, the distance values for most cable samples across various data scaling methodologies 

predominantly resided around the benchmark value 1. 

4.8 Utilizing a Singular Training Set for Classification Algorithms 

 

Fujinaka et al. (2008) achieved an accuracy of 98.3% using one single training set for their samples 

from each fire source using a K-Means algorithm. Considering the earlier method for the cables 

with ‘Training set-1’, where the training set was developed using multiple data from a set of 5 

experiments on each sample. As shown in Figure 4.11, the samples are scattered in the canonical 

space when evaluations were conducted using an averaged value. But this second approach of the 

study used data from one experiment to create the training set, and the data from the further 

experiments were used for prediction analysis.  
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The created training set, ‘Training set-2’, achieved a correction prediction rate of 75% for Norm1, 

85% for Norm2, and 95% for no-normalization with Autoscale, through cross-validation. The 

SVM produced the highest correction rate of 96.3% for Auto-scale. Further, as per the cross-

validation, either auto-scaling or mean-centering data scaling methods were employed.   

With Auto-scale and Norm1 normalization, it was observed that the CDA and SIMCA algorithms 

stood out, flawlessly predicting all the samples across the four insulation types with an accuracy 

of 100%. Meanwhile, the K-means algorithm followed closely with a 96.4% accuracy. The SVM 

displayed a respectable performance, accurately classifying 92.2% of the samples and the KNN 

algorithm showed an accuracy of 85.5%. Table 4.9 shows the performance of different algorithms.  

 KNN K-Means CDA SVM SIMCA 

B1 (PVC) 14/14 14/14 14/14 14/14 14/14 

B2 (Aromatic 

Polyimide) 

10/14 14/14 14/14 10/14 14/14 

B4 (PTFE) 12/14 14/14 14/14 14/14 14/14 

B5 (ETFE) 12/14 12/14 14/14 14/14 14/14 

 

Table 4.9 Multivariate Analysis for Training Set-2 using Norm1, Autoscaling 
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Figure 4.14 CDA Plot for four distinct cable types with Training Set-2. Figure (A) utilizes norm1 

with Auto-scale, (B) employs norm1 with mean centering (C) applies norm2 with Auto-scale, 

and (D) showcases results with no normalization paired with Auto-scale 

 

In contrast to the first method, which utilized averaged data from multiple experiments to construct 

the training set, the decision to draw datasets from a singular experiment led to a more pronounced 

variance or separation in sensor responses and good separation in the PCA plot, as shown in figure 

4.14, culminating in improved prediction outcomes. Also, the Auto-scale results are grouped more 

closely than the mean-centering results for this approach.   
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An increase in the number of samples or training classes seems to instigate a certain ambiguity 

during data processing, likely because of minimal variance between the datasets. To counteract 

this challenge, the training set was limited to encompassing an identical sample pertinent to a 

particular experiment and its associated specimens.  

4.9 Simplified Sensor Array Configurations with Cable Insulations 

 

While every sensor in the E-nose plays a pivotal role in fulfilling its multifaceted functionalities, 

it becomes evident that employing all the sensors for pattern identification in smoke signatures 

introduces excessive noise, impeding the algorithm’s identification efficacy. Moreover, a 

streamlined sensor array simplifies manufacturing processes and streamlines data management, 

enhancing operational efficiency. Similar observations regarding the use of multiple sensors were 

noted by Ni et al. (2008) in their respective study. 

MSEM proprietary metric, the Important Index Weighting (IIW) algorithm, within the CDAnalysis 

was used to address this challenge. This algorithm assigns differential weights to sensors, with 

precedence given to those demonstrating a superior ability to distinguish between samples based 

on the training set data. Subsequently, sensor responses were filtered in accordance with their 

discriminating weightage, enabling a more refined and efficient pattern identification. 

In ‘Training set – 2’, the Important Index Weighting (IIW) pinpointed 19 sensors with an index 

value surpassing 1. Subsequent cross-validation with these 19 sensors instead of the 32 sensors 

highlighted a 95% probability across Norm1, Norm2, and the No-normalization approach. 

Remarkably, both KNN and K-Means, previously registering accuracies of 85.5% and 96.4%, 

respectively, now exhibited an accuracy rate of 100%. 
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SAMPLE KNN K-Means 

B1 (PVC) 14/14 14/14 

B2 (Aromatic Polyimide) 14/14 14/14 

B4 (PTFE) 14/14 14/14 

B5 (ETFE) 14/14 14/14 

 

Table 4.10 Multivariate Analysis for Training Set-2 using Norm1, Autoscaling under simplified 

Sensor Array Approach 

The streamlined sensor array design suggests that not all sensors are crucial for discrimination 

analysis for the signature detection purposes, with the necessity contingent upon the data variance. 

This is further investigated with PCB and Nuisance Source samples.  

4.10 Classification Algorithms with PCB for small-scale Testing  

 

The study utilized printed circuit boards (PCBs) sourced from various avionic equipment, 

including Navigation Displays, Infotainment displays, and cockpit control modules. A significant 

challenge encountered was obtaining multiple, consistent samples for analysis. These samples 

contained diverse electronic components such as microcontrollers, transmitters, capacitors, and 

resistors.  

The first training set, 'T1', consisted of PCB samples A1, A2, A3, and A5. Predictive analyses were 

conducted on these same samples, subjecting them to a burn duration of an additional 10 minutes 

to collect data for 5 prediction cycles. Cross-validation of the training set, T1 yielded a 95% 

accuracy rate, irrespective of whether normalization methods were applied. Remarkably, this 

accuracy surged to 100% when the IIW was employed, and eight sensors with an index value 

below one was excluded. Every algorithm identified the sample set with a 100% accuracy rate, 

attributed to the pronounced separation between the samples, as shown in Figure 4.15.  
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 KNN K-Means CDA SVM SIMCA 

A1 5/5 5/5 5/5 5/5 5/5 

A2 5/5 5/5 5/5 5/5 5/5 

A3 5/5 5/5 5/5 5/5 5/5 

A4 5/5 5/5 5/5 5/5 5/5 

 

Table 4.11 Multivariate Analysis for T1 using Norm1, Autoscaling with all sensor values 

 

 KNN K-Means CDA SVM SIMCA 

A1 5/5 5/5 5/5 5/5 5/5 

A2 5/5 5/5 5/5 5/5 5/5 

A3 5/5 5/5 5/5 5/5 5/5 

A4 5/5 5/5 5/5 5/5 5/5 

 

Table 4.12 Multivariate Analysis for T1 using Norm2, Autoscaling after omitting 8 sensors with 

IIW less than 1 

 

Figure 4.15 (A) T1 CDA Plot for 'Norm1' and 'Autoscale' using all 32 sensors. (B) 'Norm2 

Autoscale' CDA representation, omitting eight sensors with an IIW below 1 
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Another training set, labeled as 'T2', was established using samples A4, A6, A7, A8, and A9, which 

were then subjected to predictive analysis. Cross-validation yielded a 76% accuracy rate for both 

normalization techniques and an improved 84% accuracy without normalization. This outcome 

with higher probability with no-normalization, can be attributed to the signature similarities among 

the samples. All tested algorithms accurately identified the samples from the prediction set. When 

ten sensors with an IIW value below one was excluded, cross-validation accuracy raised to 96%. 

This enhancement is illustrated in Figure 4.16, where the exclusion of sensors with lower 

weightage led to a more distinct PCA score plot for T2. 

 KNN K-Means CDA SVM SIMCA 

A4 5/5 5/5 5/5 5/5 5/5 

A6 5/5 5/5 5/5 5/5 5/5 

A7 5/5 5/5 5/5 5/5 5/5 

A8 5/5 5/5 5/5 5/5 5/5 

A9 5/5 5/5 5/5 5/5 5/5 

 

Table 4.13 Multivariate Analysis for T2 using Norm1, Autoscaling with all the sensor values 

 

Figure 4.16 T2 (A) CDA Plot with 'Autoscale' using all 32 sensors. (B) CDA plot, after excluding 

10 sensors with an IIW below 1 
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The signatures emanating from fire events can exhibit significant dynamism. Given the heightened 

sensitivity of E-nose systems to minimal sample alterations, accurate repeated prediction of these 

signatures poses a substantial challenge. This sensitivity may inadvertently introduce unwarranted 

noise, further complicating the prediction landscape. The adoption of a streamlined sensor array 

by exclusively employing sensors that contribute meaningfully to the prediction of fire-related 

signatures enhances the precision and reliability of fire detection and identification functions. This 

strategic approach mitigates the impact of unwanted noise, bolstering the E-nose system's efficacy 

in timely and accurate fire signature detection and classification. 

4.11 Analysis of Prediction Repeatability for Different Electronic Components 

 

Prediction data derived from a specific avionic circuit board, but containing different electronic 

components were evaluated for prediction using training set ‘T1’, these boards were cut into 7.62 

X 7.62 cm samples and tested under the same setup. While these samples originated from the same 

PCB, they contained multiple distinct electronic components. Upon subjecting them to predictive 

analysis, the CDAnalysis could not match the samples to the training set, labeling them as 

"unidentifiable”, across all algorithms. Also, some of the Mdistance values were exceeding 100. A 

plausible explanation for this inconsistency is that even though the signatures come from the same 

equipment, different samples might house many varied components, resulting in different 

signatures. Figure 4.17 illustrates the disparity in the PCA plot for additional samples from A3 and 

A2 tested against the other A3 and A2 samples in the training set-1.  
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Figure 4.17 CDA plot (A) 2nd  sample from A3 and (B) a 2nd sample from A2 

 

4.12 Repeatability of Prediction Algorithms with Similar Components 

 

A collection of identical samples was obtained from the PCB set comprising A7, A8, and A9 to 

evaluate the predictive repeatability of the E-nose, with a set of similar components from different 

avionics. A training set was constructed using singular measurements, and subsequent signatures 

from smoldering of similar samples were employed to verify the sample predictions. Figure 4.18 

displays two samples from A8, both Pre and Post-thermal stress. 

 

Figure 4.18 Sample A8 Pre and Post thermal stress 
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The training set, ‘T3’, derived from the sample set, achieved a prediction accuracy of 95% across 

all normalization methods with the data from all 32 sensors. The accuracy reached 100% upon 

excluding two sensors with an IIW value below 1.  

For ‘T3’, made from a single training of 2 different samples from component A8 and 1 sample 

from A7, A9. For prediction, 1 sample from A7, A8, A8’, and two others from A9 were used for 

collecting data for 5 prediction cycles. All the algorithms accurately matched the samples with 

their predecessors in the training set, suggesting a consistent signature and underscoring the 

repeatability of the E-nose in its predictions. However, one sample from the second set of A9 was 

misclassified by the KNN, CDA, and SIMCA algorithms. Figure 4.19 – Shows the Training and 

Prediction set in the PCA plot with all the sensor values chosen for the analysis.  

 KNN K-Means CDA SVM SIMCA 

A7 5/5 5/5 5/5 5/5 5/5 

A8 5/5 5/5 5/5 5/5 5/5 

A8’ 5/5 5/5 5/5 5/5 5/5 

A9 4/5 5/5 4/5 5/5 4/5 

 

Table 4.14 Multivariate Analysis for ‘T3’ using Norm1, Autoscaling with all the sensor values 
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Figure 4.19 Prediction PCA plot for (A) Sample A7 (B) Sample A8 (C) Sample A8’ and (D) 

Sample A9 

4.13 Simplified Sensor Array Configurations with Printed Circuit Boards 

 

As explored in the study by Ni et al. (2008), an abundance of signatures from various sensors can 

introduce a higher noise, leading to less precise predictions. To mitigate this, the IIW (weightage 

index algorithm) used in the Canonical Discriminant Analysis (CDA) proves beneficial in 

examining variance and filtering out sensors that contribute minimally to the discriminative 

analysis. An alternative approach focusing only on the MOS sensors, MOS sensors are widely used 

in gas detection applications. By focusing solely on the responses from 8 MOS sensors in the 
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predictive analysis for T3, the cross-validation achieved 100% prediction accuracy. Furthermore, 

every algorithm accurately predicted all samples, including the previously misclassified one 

sample from A9. This suggests the potential efficacy of E-nose systems with fewer sensors, 

emphasizing discriminative functions tailored for fire detection and the discrimination of 

signatures. Figure 4.20 – Shows the A7 and A9 sample prediction plots with only MOS sensors. 

 

Figure 4.20 Prediction PCA Plot for Samples from A7 and A9 with values from only MOS 

sensors 

4.14 Utilizing Classification Algorithms for Other Materials 

 

In fire detection, interference from unrelated or nuisance sources presents a significant challenge. 

Such interferences often lead to false alarms, which, in turn, compromise the trustworthiness and 

reliability of detection systems. In this part of the study, materials not typically associated with 

internal contaminant sources, specifically 'bread' and 'hardwood,' are sourced locally, and three 

samples from both classes were induced thermal stress and subjected to predictive analysis, 

utilizing data for 2 prediction cycles. A new training set named 'T4', which consisted of Bread 

(BR), Hardwood (HW), A7 (PCB), A8 (PCB), B1 (PVC), and B2 (AP) were formed for this 

analysis. When this 'T4' set was evaluated, the KNN method displayed 100% correct-prediction 
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probability during the cross-validation, with data from all 32 sensors. However, with the analysis 

of the 'bread' and 'hardwood' samples, most algorithms successfully identified the 'bread' sample, 

but only the KNN method accurately recognized all the 'hardwood' samples, with all 32 sensor 

values used for the analysis. 

Interestingly, when the data was limited to 8 MOS sensors, every algorithm accurately classified 

all the samples. However, the results were inconsistent when other sensor types like PID or EC 

were utilized for this specific training set in the E-nose. These findings indicate that a large dataset 

with closely related signatures from many sensors in multivariate analysis can introduce confusion, 

especially if the samples are sensitive to environmental changes. Nevertheless, carefully selecting 

appropriate sensors can enhance the system's predictive accuracy, offering a more dependable fire 

detection solution. Table 4.15 shows the analysis with all the sensors and Table 4.16 shows the 

analysis with using 8 MOS sensors. 

 KNN K-Means CDA SVM SIMCA 

HW 6/6 5/6 5/6 5/6 5/6 

BR 6/6 6/6 6/6 5/6 5/6 

 

Table 4.15 Multivariate Analysis for T4 using Norm2, Autoscaling with all the sensor values 

 

 KNN K-Means CDA SVM SIMCA 

HW 6/6 6/6 6/6 6/6 6/6 

BR 6/6 6/6 6/6 6/6 6/6 

 

Table 4.16  Multivariate Analysis for T4 using Norm2, Autoscaling with 8 MOS sensors 
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4.15 Classification Algorithms in Largescale Testing 

 

In the large-scale testing, wire samples from four distinct insulation types utilized in aircraft were 

examined (Similar ones used in the UMD small-scale experiments, except for PVC cable) at the 

FAATC mockup flight deck facility. The data gathered from these samples were used to create a 

training set. Subsequently, another identical sample set was tested to obtain measurements to assess 

the predictions' accuracy, with data for 2 prediction cycles. The training set, ‘TS-1’, exhibited a 

cross-validation correction probability of 85% with the Norm1 technique, 90% with the Norm2 

technique, and 85% without normalization, with all sensor values chosen for the cross-validation.  

The cross-validation correct probability remained at 85% when the five sensors with an Important 

Index Weighting (IIW) of less than one was deselected. Consequently, the analysis proceeded with 

all sensors selected for both cross-validation and prediction. In the prediction evaluation 

employing the Norm2 technique, various classification methods yielded diverse results. The KNN 

algorithm accurately classified all eight samples. Conversely, the K-Means algorithm misclassified 

two AP and one ET sample. The CDA also incorrectly classified one AP sample. The SVM 

algorithm misclassified two AP and PT samples, and the SIMCA algorithm incorrectly classified 

two PT samples. Table 4.17 shows the detailed list of the analysis.  

 KNN K-Means CDA SVM SIMCA 

AP 4/4 2/4 2/4 0/4 4/4 

ET (ETFE) 4/4 2/4 4/4 4/4 4/4 

PT (PTFE) 4/4 4/4 4/4 0/4 0/4 

PVC  4/4 4/4 4/4 4/4 4/4 

 

Table 4.17 Multivariate Analysis with Norm2, Auto-scaling for TS-1 with all sensor values 
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4.16 Multivariate Analysis with Printed Circuit Boards in FAATC Tests 

 

4 PCBs from different avionics were subjected to thermal stress in the FAATC setup, and the 

signatures were subjected to classification algorithms. The consistency of PCB samples still 

remained as a challenge, and for avionic samples, boards from the same equipment were subjected 

to testing multiple times for predictive analysis, and a flame retardant, Garolite, was used for 

repeated testing of an identical sample. 

The training set, ‘TS-2’ from these four Printed Circuit board samples, exhibited a remarkable 

accuracy of 100% across all data scaling techniques, with all sensor values selected for cross-

validation. The Important Index Weighting (IIW) recorded only one sensor value below 1, and its 

removal did not enhance the cross-validation results further. All employed classification 

algorithms successfully predicted all eight samples accurately. The consistent signatures recorded 

with the smoke trapped in the chamber facilitated the recording of uniform responses, significantly 

aiding the prediction process. Figure 4.21 visually represents the plots for the samples in the PCA 

space.  

 KNN K-Means CDA SVM SIMCA 

AC 2/2 2/2 2/2 2/2 2/2 

AE 2/2 2/2 2/2 2/2 2/2 

AF 2/2 2/2 2/2 2/2 2/2 

FR 2/2 2/2 2/2 2/2 2/2 

 

Table 4.18 Multivariate Analysis without any normalization, Auto-scaling for TS-2 with all 

sensor values 
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Figure 4.21 Canonical Plot with prediction samples for (A) AC, (B) AE, (C) AF, and (D) FR with 

training set TS-2 

Two additional samples, sourced from the avionic AE, were subjected to prediction analysis to 

discern the similarity in signatures originating from diverse components of the same avionic 

equipment. As explained in Table 4.19, Signatures from one sample (denoted as AE’) successfully 

aligned with the signatures from the training set when analyzed using the KNN, K-Means, and 

SIMCA algorithms. Conversely, the other sample did not exhibit a match with the training set, 

highlighting the variability in signatures across different components of the same avionics.  
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 KNN K-Means CDA SVM SIMCA 

AE 0/2 0/2 0/2 0/2 0/2 

AE’ 2/2 2/2 0/2 0/2 2/2 

 

Table 4.19 Multivariate Analysis with Norm1, Auto-scaling for TS-2 with all sensor values for 

additional samples 

Six identical samples from the Fire Retardant Garolite board were subjected to the thermal setup, 

and signatures were analyzed with the ‘FR’ sample in ‘TS-2’ for prediction. All the produced 

samples measured from each FR board matched the Fire Retardant (FR) sample in the training set 

when all the sensor values were used for prediction using KNN, K-Means and SIMCA algorithms. 

This outcome robustly suggests the Electronic Nose's (E-nose) proficiency in accurately 

identifying the signatures. 

 KNN K-Means CDA SVM SIMCA 

FR1 5/5 5/5 0/5 0/5 5/5 

FR2 5/5 5/5 0/5 0/5 5/5 

FR3 5/5 5/5 0/5 0/5 5/5 

FR4 5/5 5/5 0/5 0/5 5/5 

FR5 5/5 5/5 5/5 0/5 5/5 

FR6 5/5 5/5 5/5 5/5 5/5 

 

Table 4.20 Multivariate Analysis with Norm1, Auto-scaling for TS-2 with all sensor values for 

similar FR samples 

The samples were further explored by exclusively focusing on responses from the MOS sensors. 

When the Fire Retardant (FR) samples were subjected to cross-validation, they consistently 

exhibited 100% confidence across all data scaling techniques. The KNN and K-means algorithms 

adeptly identified all the samples correctly. The Canonical Discriminant Analysis (CDA) also 

correctly identified some previously misclassified samples (FR2 and FR3), enhancing the overall 
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accuracy. However, the SIMCA analysis encountered difficulties. This comprehensive analysis 

robustly supports employing a minimized sensor array with only MOS sensors for efficient and 

accurate detection and identification of early fire signatures. The accompanying figure 4.22 

visually represents the plots for FR3 and FR5 with all sensor values Vs exclusively with MOS 

sensors. 

 

Figure 4.22 Canonical Plot with training set TS-2 for (A) FR3 with all sensor values, (B) FR5 

with all sensor values, (C) FR3 with 8 MOS sensor values, and (D) FR5 with 8 MOS sensor 
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4.17 Classification Algorithms with Training Set Developed from Various Materials  

 

A comprehensive new training set, ‘TS-3’, was developed, incorporating responses from two fan 

samples (BF and HWF) that were subjected to failure and responses from Hydraulic Oil (HY) and 

Jet Oil (JO) exposed to overheating using a hot plate. The FR and PVC sensor responses used to 

create the earlier training set were also included in TS-3. The cross-validation of this diverse 

training set yielded an 80% confidence with Norm1 and 86.7% with no-normalization. 

Remarkably, upon omitting 14 sensors with an Important Index Weighting (IIW) less than 1, the 

cross-validation confidence raised to 96.7% across all data-scaling techniques, highlighting the 

significant impact of selective sensor value inclusion on prediction accuracy. Further samples from 

the fan failure experiment and identical samples for the Hydraulic and Jet oil in the same heating 

setup were analyzed for predictions with ‘TS-3’. Barring one instance with a HY sample in 

SIMCA, all algorithms correctly classified all the samples. This consistent accuracy was mirrored 

when only 8 MOS sensor responses were used for the analysis, akin to the earlier iteration. 

Figure 4.23 provides a visual representation, showcasing the PCA plot for the training set with 8 

MOS sensor values selected vs. the training set after the omission of 14 sensor values with IIW 

less than 1. The PCA score plot further illustrates closely aligned responses for the signatures from 

the fan samples. This alignment underscores the potential of employing training algorithms to 

develop extensive classes of similar samples for efficient and accurate identification on a large 

scale, suggesting similar signatures from the failures. 

 

 

 



112 
 

 KNN K-Means CDA SVM SIMCA 

BF 2/2 2/2 2/2 2/2 2/2 

HWF 2/2 2/2 2/2 2/2 2/2 

JO 2/2 2/2 2/2 2/2 2/2 

HY 2/2 2/2 2/2 2/2 0/2 

 

Table 4.21 Multivariate Analysis with Norm1, Auto-scaling for TS-3 with only MOS Sensor 

Values 

 

 

Figure 4.23 PCA score plot with (A) 18 sensor responses and (B) 8 MOS sensor responses 

 

4.18 Performances of Classification Algorithms Under Reduced Pressure 

 

An experiment was conducted within a low-pressure chamber at the FAATC to emulate the cabin 

pressure at 8000 ft and assess the functionality of the E-nose under high altitude conditions. To 

mitigate the impact of reduced pressure and facilitate the introduction of signatures to the sensor 

array, a 30 LPM diaphragm pump, and a flow control valve were employed upstream of the inline 

filter. The training set, TS-4, showed 100% confidence across all data-scaling techniques. 



113 
 

Further, additional prediction samples, denoted as FR' - signatures from the same FR board, FR" - 

A new similar FR board, exhibited perfect matches across all the algorithms. This outcome robustly 

suggests the adaptability and reliability of E-nose measurements across diverse environmental 

conditions, reinforcing the E-nose's potential as a versatile and dependable tool across different 

environments. 

 KNN K-Means CDA SVM SIMCA 

FR’ 3/3 3/3 3/3 3/3 3/3 

FR’’ 3/3 3/3 3/3 3/3 3/3 

 

Table 4.22 Classification Algorithms with Norm1, Mean-centering for TS-4 with all Sensor 

Values 

To check the similarity of signatures in various environments from similar samples. the Fire 

Retardant (FR) sample, tested under three distinct conditions - the UMD scale experiment, FAATC 

Mockup, and FAATC reduced pressure vessel- was subjected to predictive analysis to further 

explore the repeatability across diverse conditions. A new training set, ‘TS-5’ was constituted, 

incorporating values gathered during the FAATC mockup testing, including JO, PVC, AF, and FR 

samples.  

FR1 sample encompassed signatures collated during the small-scale experiment, while FR2 

comprised those obtained from the reduced pressure vessel using the earlier FR’. The cross-

validation process yielded a 100% confidence level observed with both Norm2 and Norm1 

techniques.  

During the analysis, only the K-means algorithm correctly predicted both samples in the analysis 

where all sensor values were selected. Contrarily, all other algorithms faltered with inaccurate 

sample classification. Further exploration utilizing only eight MOS sensors also did not yield 
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favorable results. None of the algorithms correctly classified the sample from the reduced pressure 

test. However, K-means and Canonical Discriminant Analysis (CDA) adeptly classified the small-

scale experiment sample. 

This classification challenge is attributed to the substantial drift in individual sensor responses and 

baseline. Additionally, the reduced pressure test's distinct flow rate, differing from other setups, 

further compounded the classification complexity.  

 KNN K-Means CDA SVM SIMCA 

FR1 0/2 2/2 0/2 0/2 0/2 

FR2 0/2 2/2 0/2 0/2 0/2 

 

Table 4.23 Classification Algorithms with Norm2, Auto-scale for TS-4 with all Sensor Values 

 

4.19 Application of Bosch BME688 for Predictive Analysis 

 

The Bosch BME688 sensors played a crucial role in all the analyses conducted. These sensors 

were employed during small-scale experiments to gather comprehensive sensor information and 

gas channel data. The collected data was classified based on the sample type, providing a robust 

neural network training dataset. 

Initially, attempts to train the sensor with various cable insulations for prediction within the 

different insulations in the experimental setup did not yield successful results. This led to a 

different approach, focusing on class preparation based on material types (e.g., Cable 

Insulation/Ambient Air / PCBs)and using it for predictive analysis of the sample. The neural 

network was then trained incrementally with each additional sample tested. The newly created 

classes included eight specimens for Ambient Air, eleven specimens for PCBs, and four for cables. 
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Class A consisted of Ambient Air specimens, Class B – Printed Circuit Boards, and Class C 

contained sensor responses for cable insulations. 

A predefined neural network architecture tailored for the BME688 was employed, utilizing the 

ADAM optimizer with a batch size 32. This structured approach led to significant improvements 

in model performance. The trained algorithm consistently demonstrated an accuracy exceeding 

95% across all four heater profiles, showcasing the effectiveness of the refined training and 

classification strategy. 

Heater Profile and Duty 

Cycle 

Accuracy F1 Score Miss Rate 

HP-301 / RDC-1-0 99.75% 99.65% 0.33% 

HP-354 / RDC-1-0 96.61% 94.43% 5.05% 

HP-411 / RDC-1-0 96.36% 93.84% 5.56% 

HP-501 / RDC-1-0 95.08% 91.84% 6.94% 

 

Table 4.24 Algorithm evaluation parameters for different heater profiles 
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Figure 4.24 Confusion Matrix for (A) HP-301, (B) HP-354, (C) HP-411 and (D) HP-501 

 

This algorithm was deployed during large-scale experiments conducted at the FAATC. During 

these tests, the BME688 sensor exhibited a delay ranging from 30 to 60 seconds between the 

appearance of visible smoke and the sensor's response to detect the samples. Despite this delay, 

the sensor successfully and accurately classified all the PCB samples in the mockup and reduced 

the pressure vessel as 'Board' (Class-B). 

However, two cable types, PTFE and AP (Aromatic Polyamide), were incorrectly classified as 

‘Air’ (Class – A) and ‘Board’ (Class-B). This misclassification could be attributed to the 

observations made during the gas analysis using the E-nose. It was noted that the signatures from 

both these cable types were significantly lower than other cable samples, which might have led to 
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their misidentification as air. The detailed prediction results with BME688 are presented in Table 

4.25 for further reference and analysis. 

Sample Correct Class Predicted Class 

AE Class - B Class - B 

AC Class - B Class - B 

AF Class - B Class - B 

FR Class - B Class - B 

AP Class - C Class - B 

ETFE Class - C Class - C 

PTFE Class - C Class - A 

PVC Class - C Class- C 

Reduced Pressure Environment 

FR Class – B Class - B 

 

Table 4.25 Prediction Results with the BME688 Algorithm 

 

Even though the BME688 sensor failed to identify the elements within similar classes, integrating 

Artificial Intelligence (AI) capabilities is helpful in training the neural networks with a wide 

variety of samples. While the multi-sensor array E-nose successfully identified elements within 

different sets of classes, it faced challenges in applying training from one environment to 

predictions in another for similar samples. This transition introduced additional noise and 

confusion into the data, leading to inaccurate predictions. 
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5 CONCLUSION AND FUTURE WORK 

 

The in-depth thermal impact and failure analysis of potential internal contaminant sources in 

aircraft, especially those from the cockpit, has yielded valuable insights into their behavior. A 

consistent observation across all samples showed elevated odor levels compared to ambient 

conditions, a trait also shown by the nuisance sources. While individual gases such as NH3, 

Alcohol, CH2O, and C2H4 exhibited minimal responses during testing, C2H4 levels were slightly 

higher than the rest. Interestingly, TVOC levels from printed circuit boards exceeded those from 

external contaminants like Jet Oil and Hydraulic Oil. However, they were lower than ‘burned 

bread’ and ‘hardwood’ levels, suggesting TVOC can be a potential marker to current smoke 

detection systems for improved alarm reliability. 

When examining aviation cable insulation materials, PVC and ETFE insulations were more 

smoke-intensive than other materials. Even though ETFE insulation stood out for its resilience and 

integrity, PVC insulation deteriorated completely, although both produced considerable smoke 

during the induced failure using a high current setup. On the other hand, aromatic polyimide 

demonstrated reduced smoke emission and enhanced durability. The ASD system's promptness in 

detecting escalating smoke levels met anticipations set by the test volume and the system's 

aspiratory efficiency.  

The minimal changes in CO, CO2, and O2 levels during the tests indicate that relying only on 

measuring these gases alone was not adequate for early detection of specific ICS events. Even with 

its limited aspirating capacity, the E-nose's performance was respectable, it also showed a faster 

response and sensor peak with a higher flow rate in the low-pressure vessel tests. 
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Exploratory algorithm studies revealed that incorporating all sensor responses from a conventional 

multi-sensor array may not be imperative for fire detection and discrimination. Implementing an 

approach with 8 MOS sensors or using the Important Index Weighing algorithms yielded superior 

results to configurations utilizing all 32 sensors in the array. This indicates the potential for 

adopting a more streamlined sensor array, which serves the primary objectives of fire detection 

and discrimination and offers advantages in data management, reduced sensor drift, and equipment 

maintenance. MOS sensors, while advantageous for their sensitivity, face critical limitations such 

as poor selectivity, which can lead to difficulty distinguishing target gases from other substances, 

resulting in false positives. Additionally, MOS sensors can suffer from aging effects, leading to a 

decline in sensitivity over time, and may experience sensor drift, necessitating regular calibration 

to maintain accuracy. Despite these limitations, MOS sensors are still popular because of their low 

cost and ability to detect a wide range of gases. 

The intelligent algorithms' performance was closely tied to the variance and consistency of sensor 

responses inherent in the developed training datasets. Training sets derived from averaged sample 

values produced more dispersed canonical plots and less precise predictions than those constructed 

from singular specimen values. In the small-scale tests with various samples, using all 32 sensors, 

K-Means achieved the highest accuracy at 98%, followed by CDA at 97.4%, SIMCA at 96.8%, 

KNN at 92.9%, and SVM at 94.9%. When the analysis was narrowed down by either the 8 MOS 

sensors or using the IIW matrix, every algorithm reached a perfect 100% accuracy. For the large-

scale tests, KNN led with an accuracy of 96.5%, trailed by both K-Means and SIMCA at 89.6%, 

CDA at 55%, and SVM at 36.2%. When the focus was shifted to only the MOS sensors, which 

were selected based on their enhanced cross-validation probability relative to the full sensor set, 

every algorithm demonstrated 100% accuracy. K-Means was the sole algorithm that consistently 
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and accurately predicted samples from diverse testing conditions using chemometric analysis, 

suggesting its potential as the optimal choice for quick analysis and discrimination of ICS sources. 

While similar samples, like PCB and aviation cables, exhibited comparable signatures, there was 

also a marked difference in signatures from different samples within a single avionic equipment. 

This underscores the need for a diverse training dataset and the possible challenges of diverse 

signatures from different parts of the same PCB / avionic. 

The BME688 sensor, with a single MOS sensor, effectively categorized distinct classes, especially 

those that produced considerable markers, but faced challenges in differentiating various samples 

within classes. The AI capabilities through the BME688 AI studio were highly helpful in training 

the neural network with a new sample. 

In practical applications, classifying similar samples into shared categories and using an optimized 

metal oxide sensor array with machine learning techniques can strengthen the reliability of alarms, 

facilitate the identification of combusting materials, and reduce false alarms. For practical 

implementations, it is essential to adopt advanced machine learning methods, like those found in 

the BME AI Studio, for training sensors across a range of conditions and target environments rather 

than solely relying on a direct multivariate approach. 

This research has been limited to experiments involving a single type of sample subjected to 

thermal stress. Future studies could expand on this by examining multiple similar samples or 

nuisance sources subjected to thermal stress together. Utilizing data from these experiments for 

production would enable an evaluation of the algorithms' ability to identify each sample accurately. 

Additionally, it would offer insight into how the correct prediction rates are influenced by the 

presence of multiple sources and whether the algorithms can effectively distinguish between them 

in a more complex detection environment. Future works can explore combining machine learning 
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with multi-gas sensors, especially when paired with existing fast detection methods. A deeper dive 

into the specific gases released from signature ICS can provide insights into their potential as 

unique markers. While detecting gases from every individual ICS might be challenging due to their 

wide variety, a broader strategy could involve training sensors on gases from similar ICS types 

and examining their response parameters. 
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6 Appendix 

 

 

Figure 6.1 SVM Plot with Autoscale and norm1 scaling for various cable samples with Training 

Set-1  - (A) Aromatic Polyimide, (B) ETFE, (C) PTFE, and (D) PVC. Contour lines delineate 

SVM boundaries. 
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TEST MATRIX 

SAMPLE FAA UMD 

Printed Circuit Board 

200-09058-000  X 

634-2698-002  X 

105-02307-00  X 

153-018105-02  X 

634-3517-005  X 

440-00059-03 

NEC, NL10276BC20-04 

 X 

Multi-Function Displays  X 

105-02133-00  X 

FR-4 1/8” X X 

105-01134-00 Ver 3 X  

105-02109-00 Ver 1 X  

S4151-009060720020 X  

Wire Samples 

M81381 / 12-20 X X 

M22759/ 34-16-9 X X 

BMS13-60-19 X X 

M5086/1-22-9 X  

55A0811-20-9  X 

PVC 10/0.1 Equip Wire  X 

Other Materials 

Jet Oil X  

Hydraulic Oil X  

Hardwood  X 

Bread  X 

FAN SAMPLES 

645405-1 X  

4100941D X  

 

Table 6.1 Test Matrix 

  

 

 

 

 

 

https://www.limitlessaerospace.com/aircraft-model/rfq/rockwell-collins/634-3517-005/
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Figure 6.2 Xtralis Test Transformer used for cable failure tests 
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Figure 6.3 ASTME662 chamber used for UMD tests 
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Figure 6.4 Inside view from the FAA box during testing 
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Figure 6.5 Low-Pressure Vessel at FAATC 

 

 

Figure 6.6 VESDA Piping top view by Xtralis 
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